
Few-shot Adaptation for Manipulating Granular
Materials Under Domain Shift

Yifan Zhu∗, Pranay Thangeda∗, Melkior Ornik, Kris Hauser
University of Illinois Urbana-Champaign

{yifan16,pranayt2,mornik,kkhauser}@illinois.edu
∗These authors contributed equally to this work

Abstract—Autonomous lander missions on extraterrestrial
bodies will need to sample granular material while coping with
domain shift, no matter how well a sampling strategy is tuned on
Earth. This paper proposes an adaptive scooping strategy that
uses deep Gaussian process method trained with meta-learning
to learn on-line from very limited experience on the target
terrains. It introduces a novel meta-training approach, Deep
Meta-Learning with Controlled Deployment Gaps (CoDeGa),
that explicitly trains the deep kernel to predict scooping volume
robustly under large domain shifts. Employed in a Bayesian Op-
timization sequential decision-making framework, the proposed
method allows the robot to use vision and very little on-line
experience to achieve high-quality scooping actions on out-of-
distribution terrains, significantly outperforming non-adaptive
methods proposed in the excavation literature as well as other
state-of-the-art meta-learning methods. Moreover, a dataset of
6,700 executed scoops collected on a diverse set of materials,
terrain topography, and compositions is made available for future
research in granular material manipulation and meta-learning.

I. INTRODUCTION

Terrain sampling is a key component of scientific explo-
ration of planets and other extraterrestrial bodies [15]. How-
ever, Earth-bound teleoperation, as typically done in existing
landers, faces intermittent and delayed communication that
incurs latency of minutes or even hours in the case of long-
duration interference. Autonomous sampling, in which the
robot interprets sensor signals and makes decisions on where
and how to sample, could drastically increase the efficiency
of exploration. However, realizing autonomous sampling is
challenging due to uncertainty in terrain material properties,
composition, appearance, and geometry, limits in onboard
computation, and a limited sampling budget.

This paper is inspired by proposed NASA missions to
send autonomous landers to Europa and Enceladus to col-
lect and analyze terrain samples to explore whether these
bodies exhibit conditions that could support extraterrestrial
life [15]. However, the composition of the icy regolith is
largely unknown and could range from snow-like granules,
to flat ice, to complex terrain formations. Although a lander
may be tuned to sample well on Earth-bound terrain simulants,
it will inevitably face a deployment gap when operating on
an extraterrestrial body. This work proposes a learning-based
approach that explicitly addresses such gaps.

Specifically, we study a simplified but analogous problem of
scooping in which the goal is to collect high-volume samples

(a)

(b)

(c)

(d) Scoop 1

Scoop 2

Scoop 3

Fig. 1: (a) Scooping sand towards a slope results in a larger
scooped volume than scooping a flat surface, but (b) scooping
gravel towards a slope (left) often results in jamming due to
interlocking between particles. Instead, scooping perpendicu-
larly to a slope (right) causes a large volume of rocks to fall
into the scoop without excessive effort. (c) On a terrain with a
novel non-scoopable material (right), a non-adaptive strategy
predicts high volumes on this out-of-distribution material and
only selects to scoop there (yellow arrows). (d) Our adaptive
strategy adjusts based on the feedback to explore novel and
uncertain regions [Best viewed in color].

from a target terrain with a limited budget of attempts. Dif-
ferent terrain compositions and shapes require very different
scooping strategies, as shown in Fig. 1. For instance, while



Candidate Actions

 

Training
Distribution

Mean Training

GP Training

CoDeGa Training

Offline Data Collection

Split 1

Split 2

Split 3

Trained
Model

Deployment
Distribution

Deployment

Decision
Maker

Online
Support Set

Deployment Gap

Fig. 2: Method overview. Our proposed deep GP model is trained on the offline database with CoDeGa, which repeatedly splits
the training set into mean-training and kernel-training and learns kernel parameters to minimize the residuals from the mean
models. In deployment, the decision-maker uses the trained model and adapts it to the data acquired online (Support Set).

scooping against a slope on sand leads to a larger scooped
volume, doing so on a bed of gravel often results in excessive
contact forces because the gravel can interlock and jam.
Although machine learning models can be trained using terrain
simulants to predict scooping outcomes [21], these models will
have worse prediction accuracy when the target terrain is out
of distribution of the training terrains.

As a result, it is necessary for the robot to adapt its strategy
in an on-line fashion based on data acquired on the target
terrain. Ideally, the robot should adapt with a small amount of
data, i.e., in a few-shot learning setting. Meta-learning, also
known as learning to learn, is a promising approach to few-
shot adaptation in which the on-line learning strategy itself is
learned using a set of training tasks [40].

We propose a deep Gaussian process (GP) method that uses
meta-learning to learn both the mean and kernel functions.
The deep Gaussian process model employs deep mean func-
tions and deep kernels where the input to the GP kernel is
transformed by a neural network. It’s important to differentiate
our definition of the term deep GP from its other usage in
the literature where it can also refer to deep belief networks
constructed from compositions of GP models [8]. Although
models similar to our proposed model have been adopted for
few-shot adaptation [25], we introduce a new meta-training
approach that explicitly trains the kernel to perform well on
out-of-distribution tasks. Summarized in Fig. 2, our Deep
Meta-Learning with Controlled Deployment Gaps (CoDeGa)
method repeatedly splits the training set into mean-training

and kernel-training and learns kernel parameters to minimize
loss over the residuals from the mean models. The key idea
is that we explicitly control the splitting process to ensure the
mean-training and kernel-training sets have maximal domain
gaps, and the residuals seen by the kernels based on these
splits are more representative of the residuals seen in an out-
of-distribution target task.

During scooping, our model takes an RGB-D image and
parameters of a scooping action as input and predicts the
mean and variance of the scooped volume. It is trained by
executing 5,100 scoops on a variety of terrains with different
compositions and materials. For decision-making, we use a
Bayesian optimization framework that chooses an action that
maximizes an acquisition function that balances the scoop vol-
ume prediction and its uncertainty. Our experiments evaluate
the proposed method on out-of-distribution terrains that have
drastically different appearances and/or material properties
than the training terrains. Our method allows the robot to
achieve high-volume scooping actions in out-of-distribution
terrains faster than state-of-the-art deep kernel and conditional
neural processes models when used in Bayesian Optimization.
Moreover, it significantly outperforms non-adaptive methods
such as those proposed in the granular material manipula-
tion literature. Finally, to encourage further research in these
domains, we release our dataset of 6,700 executed scoops
collected on a diverse set of materials and compositions 1

1Dataset download link: https://drillaway.github.io/scooping-dataset.html

https://drillaway.github.io/scooping-dataset.html


II. RELATED WORK

Our work is related to granular material manipulation and
is to our knowledge the first approach to integrate vision input
and manipulation outcomes to adapt to out-of-distribution
terrains. In addition, we also review literature related to the
learning techniques underlying our approach, including meta-
learning for Gaussian processes, Bayesian optimization, and
few-shot learning.

A. Granular Material Manipulation

Granular materials occur in a variety of real-world robotic
applications, including food preparation, construction, and
outdoor navigation. Many granular material manipulation tasks
have been explored, including scooping [33], excavation [6],
pushing [38], grasping [39], untangling [28] and locomo-
tion [34, 18]. Most related to our work are scooping and
excavation, which are connected but operate on different
scales. The task proposed by Schenck et al. focuses on
manipulating a granular terrain to a certain shape [33] by
learning a predictive function of terrain shape change given
an action. An optimization-based method is proposed by Yang
et al. to generate excavation trajectories to excavate desired
volumes of soil based on the intersection volume between the
digging bucket swept volume and the terrain [45]. Dadhich
et al. propose to use imitation-learning for rock excavation
by wheel loaders, given expert demonstrations of [7]. All of
these past works are developed on a single type of material.
In contrast to these methods, our work directly addresses
the large deployment gaps that are likely to be found in
extraterrestrial terrain sampling. We explore the use of ker-
nel learning methods trained on offline data combined with
Bayesian Optimization to achieve adaptive behavior with little
experience of the target terrain.

B. Meta-learning for Gaussian Process and Bayesian Opti-
mization

When using a Gaussian process (GP) to model an un-
known function, knowledge of the distribution from which
this function is drawn is required, which is encoded in the GP
kernel and other hyperparameters. Usually, this distribution is
unknown in practice and all the hyperparameters are estimated
with data. However, in the few-shot regime, this estimation
can be quite inaccurate with few data points available [26].
One idea to approach this problem is to meta-train the GP
on similar tasks [3, 36] offline to find good hyperparameters.
In addition, to handle high-dimensional inputs, meta-training
deep mean functions and/or deep kernels has also been ex-
plored [10, 25, 31].

Bayesian Optimization (BO) is a popular approach for
sequential optimization in problems like ours that can be
modeled as a contextual bandit. Using GP as the Bayesian
statistical model for modeling the objective function is com-
mon practice in BO. Meta-learning GP in the context of BO
has also been explored before, for both GP [17, 43] and deep
mean and kernels [31]. Closest to our approach is the work
that meta-learns deep kernels and means for use in BO [31].

Compared to this work, where there are dozens to hundreds
of on-line samples, our work focuses on the few-shot regime.
In addition, our work deals with real-world high-dimensional
inputs and challenging testing scenarios that are drastically
different from training scenarios.

C. Few-shot Learning via Meta-learning

Meta-learning and its application in the few-shot learning
scheme have been explored extensively. It involves training
models on an offline training dataset consisting of multiple
tasks, that can adapt to a novel task using only a few examples.
It has been studied in low-dimensional function regression [16,
14, 27], image classification [5, 37, 42, 23], and reinforcement
learning tasks [9, 22, 1]. These approaches usually rely on
some distance metric in feature space to compare the new
examples to the available labeled examples [19, 32, 42, 2],
perform few-shot estimation of the underlying density of
data [41, 29, 4, 30], or use gradient descent to update a model
learned on many related tasks [9, 13, 20, 23]. We apply few-
shot learning in the context of decision-making for granular
material manipulation. However, these meta-learning methods
do not necessarily work well right out of the box for the
few-shot adaptive scooping problem, which we will show in
the experiments. Hence we propose CoDeGa, a novel few-
shot meta-learning method for deep GP that allows the robot
to achieve high-quality scooping actions in out-of-distribution
terrains faster than state-of-the-art methods.

III. PROBLEM FORMULATION

We formulate the scooping problem as a sequential
decision-making task where the robot, in each episode,
observes the terrain RGB-D image o ∈ O, uses a scooping
policy to apply a ∈ A(o) where A(o) is a discrete set of
parameterized, observation-dependent scooping motions. The
reward r ∈ R of a scoop is the scooped volume.

Presented with a target terrain T∗, the robot’s goal is
to find a scoop whose reward is above a threshold B. In
planetary missions, for example, B could be the minimal
volume of materials needed to perform an analysis. During
the n-th episode, the robot knows the history of scoops on
this terrain H = {(oj , aj , rj) | j = 1, . . . , n − 1}, which
we also refer to as the on-line support set. Note that the
support set only contains samples of low quality, i.e. below B,
because otherwise the goal would already have been achieved.

The robot has access to an offline prior scooping experience,
which consists of a set of M terrains {T1, . . . , TM}, and a
training dataset Di = {(oj , aj , rj) | j = 1, . . . , Ni} of past
scoops and their rewards for each terrain i = 1, ...,M .

For a terrain, we suppose a latent variable α characterizes
its composition, material properties, and topography, which
are only indirectly observed. Let α∗ characterize T∗ and αi

characterize Ti for i = 1, . . . ,M . Moreover, the observation
is dependent on the latent variable, and an action’s reward
r ≡ r(α, a) is also an unknown function of the action



and latent variable. Standard supervised learning applied to
model r ≈ f(o, a) will work well when α∗ is within the
distribution of training terrains, and α∗ is uniquely determined
by the observation o or the reward is not strongly related to
unobservable latent characteristics. However, when T∗ is out of
distribution or the observation o leaves ambiguity about latent
aspects of the terrain that affect the reward, the performance
of the learned model will degrade.

As a result, on-line learning from H has the potential to
help the robot perform better on T∗. Meta-learning attempts
to model the dependence of the reward or optimal policy on α,
either with explicit representations of α (e.g., conditional neu-
ral processes [12]) or implicit ones (e.g., kernel methods [25],
which are used here).

IV. SCOOPING PROBLEM DESCRIPTION

This section describes the scooping problem in more detail.
We use the setup shown in Fig. 3, which includes a UR5e
arm with a scoop mounted on the end-effector, an overhead
Intel RealSense L515 RGB-D camera, and a scooping tray that
is approximately 0.9 m x 0.6 m x 0.2 m. A terrain is defined
as a unique composition of one or more materials, where a
material is composed of particles with consistent geometry
and physical properties. We consider a variety of materials
and compositions for the offline database. The materials used
in this project are listed in Tab. I. The offline database contains
materials Sand, Pebbles, Slates, Gravel, Paper Balls, Corn,
Shredded Cardboard, and Mulch. The testing terrains also
include Rock, Packing Peanuts, Cardboard Sheet and Bedding,
which significantly differ from the offline materials in terms
of appearance, geometry, density, and surface properties. The
terrain compositions used are listed in Tab. II. The offline
database contains the Single, Mixture, and Partition composi-
tions, while the testing set also contains the Layers composi-
tion. On terrains with the Layers composition, observations do
not directly reflect the composition of the terrain, and on-line
experience is needed to infer it. All terrains are constructed
manually, with varying surface features (e.g. slopes, ridges,
etc.) with a maximum elevation of about 0.2 m and a maximum
slope of 30◦. Some terrain examples are demonstrated in
Fig. 4. We also observe that the scooping outcomes show
high variance because many terrain properties are not directly
observable, such as the arrangement and geometry of the
particles beneath the surface.

A scoop action is a parameterized trajectory for a scoop
end effector that is tracked by an impedance controller. We
follow the common practice in the excavation literature [21,
35] to define a scooping trajectory, shown in Fig. 5, where the
scoop has a roll angle of 0 and stays in a plane throughout
the trajectory. The scoop starts the trajectory at a location p,
penetrates the substrate at the attack angle α to a penetration
depth of d, drags the scoop in a straight line for length l to
collect material, closes the scoop to an angle β, and lifts the
scoop with a lifting height h. We assume that the scoop always
starts scooping at the terrain surface, which can be calculated

Sand†: fine play
sand, ≪ 1 mm

Pebbles†: rocks,
0.8 – 1.0 cm

Slate†: flat
rocks, 2.0–
4.0 cm

Gravel†: rocks,
1.5–3.0 cm

Paper Balls†:
crumpled paper,
4.0 – 6.0 cm

Corn†: dry
corn kernels,
0.3–0.7 cm

Shredded
Cardboard†:
cardboard, 1.0 –
8.0 cm

Mulch†: red
wood landscape
mulch

Rock: rocks, 5.0
– 8.0 cm

Packing
Peanuts: white
packing peanuts,
2 x 4 cm

Cardboard
Sheet: flat
cardboard sheet

Bedding: small
animal bedding,
wood shavings,
0.2 - 3 cm

TABLE I: Materials used in each terrain, with approximate
grain sizes where applicable. Images show U.S. quarter coin
for scale. Training set denoted with †; testing set consists of
all materials and novel material combinations.

Single†: A single
material

Mixture†:
Uniform mixture
of two materials

Partition†: two
materials that
each occupy a
partition

Layers: Two par-
titions but with
two layers of dif-
ferent materials in
one partition

TABLE II: Terrain compositions. Training set denoted with †;
testing set consists of all compositions.

from the depth image. The impedance controller of the end-
effector is configured with stiffness parameters b.

To reduce the action space, we manually tuned the pa-
rameters that have smaller effects on the scooping outcome,
fixing the attacking angle α at 135◦, the dragging length l at
0.06 m, the closing angle β at 190◦, and the lifting height h
at 0.02 m. In addition, we set two options for the impedance
controller stiffness b, corresponding to soft and hard stiffness,
where the linear spring constants are 250 N/m and 750 N/m
and the torsion spring constants are 6 Nm/rad and 20 Nm/rad,
respectively. Therefore, the action is specified by the starting
x, y position and yaw angle of the scoop, the scooping depth
d, and stiffness b.

To measure the scooped volume, the scoop is moved to
a fixed known pose, after which a height map within the
perimeter of the scoop is obtained from the depth image. The
volume is then calculated by integrating the difference between
this height map and the height map of an empty scoop at the



Fig. 3: The experimental setup.

Fig. 4: Example terrains illustrating different compositions,
materials, and topography. Top left: Partition of Sand and
Corn. Top right: Mixture of Mulch and Gravel. Bottom left:
Single of Pebbles. Bottom right: Layer of Shredded Cardboard
(right), Packing Peanuts (left, top layer), and Slates (left,
bottom layer).

Attacking 
angle 𝛼

Penetration 
depth 𝑑

Dragging length 𝑙

Closing 
angle b

Lifting 
height ℎ

Scooping 
location 𝑝

Fig. 5: Scooping trajectory.

Fig. 6: Collected data distribution. The maximum scoop vol-
ume is 260.8 cm3, while the average is 31.3 cm3.

same pose collected beforehand.
The offline database contains data on 51 terrains, all with

unique combinations of materials and compositions. Out of
these terrains, 8 are Single, 25 are Partition, and 18 are
Mixture. The materials used are randomly selected from the
training materials. 100 random scoops are collected on each
terrain, sampled uniformly with random x, y positions in the
terrain tray, random yaw angle from a set of 8 discretized
yaw angles, 45◦ apart, random depth in the range of 0.03 m
to 0.08 m, and random stiffness (either “hard” or “soft”).
Sometimes trajectory planning of the robot manipulator for
a sampled scoop can fail due to kinematic constraints. If so,
the scoop action is discarded and sampling continues until
planning is successful. The average scooped volume across
the offline database is 31.3 cm3, and the maximum volume
is 260.8 cm3. The distribution of scooped volumes in the
database is shown in Fig. 6.

V. PROPOSED METHOD

Our approach models the reward’s dependence on the
observation o, action a, and history H as a deep Gaussian
process (GP) model. Our Deep Meta-Learning with Controlled
Deployment Gaps (CoDeGa) method uses a deep mean and
kernel for the GP which are meta-trained to perform well under
simulated deployment gaps extracted from the training set.
With such a model, the predicted reward and its variance are
used at each step to optimize the chosen action using Bayesian
optimization. We will first describe our proposed deep GP
model, and then training the model with CoDeGa.

For convenience of notation, we let x = (o, a) denote an
observation-action pair, and y = r denote a reward. Let us
also separate the training datasets into sequences of dependent
variables Dy

i = {(rji ) | j = 1, . . . , Ni} and independent
variables Dx

i = {(oji , a
j
i ) | j = 1, . . . , Ni}.

A. Deep Gaussian Process Model

A GP models function f as a collection of random variables
f(x) which are jointly Gaussian when evaluated at locations
x [26]. A GP is fully specified by its mean function m(·) and
kernel k(·, ·), which is the covariance function:

f(x) ∼ GP(m(x), k(x, x′)). (1)



Given n existing observed function values y =
[y1, . . . , yn]

T at x = [x1, . . . , xn]
T , GP regression predicts the

function values at new point x∗ as a Gaussian distribution:

P (y∗|x,y, x∗) ∼
N (m(x∗) + kK−1ȳ, k(x∗, x∗)− kK−1kT ).

(2)

Here,

K =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, kn)

+ σ2
nI,

k =
[
k(x∗, x1), · · · , k(x∗, xn)

]
,

ȳ = [y1 −m(x∗), . . . , yn −m(x∗)]T ,

where σn is the standard deviation of noise at an observation
and ȳ is the residual. A typical choice for the mean function is
a constant mean and the radial basis function kernel (RBF) is
a popular kernel of choice [26]. The mean constant, kernel
function parameters, and σn can be hand-picked if there
is prior knowledge of f . In practice, doing so is usually
not possible and they are estimated from data with type-II
maximum likelihood by minimizing the negative log marginal
likelihood (NLML):

− logP (y|x, θ) = 1

2
log |K+ σ2

nI|

+
1

2
(y −m(x))T (K+ σ2

nI)(y −m(x))

+ c,

(3)

where θ denotes all the parameters to be determined and c is
a constant.

Deep kernels enhance kernels with neural networks to be
more scalable and expressive [44]. For deep kernels, an input
vector is mapped to a latent vector using a neural network
before going into the kernel function k(gθ(·), gθ(·)), where
gθ(·) is a neural network with weights θ. Deep kernels
for the few-shot adaptation setting have been proposed [25]
previously. Deep kernels were also extended to use deep mean
functions mθ(·) [10]. Our proposed deep GP contains both a
deep kernel and a deep mean. The model takes in a local patch
of the RGB-D image starting at the sampling location and
aligned with the yaw angle and the action parameters to predict
the scooped volume. Since the information on the scooping
starting location and yaw angle is already contained in the
image patch, the action parameters include only the scooping
depth and the binary stiffness variable. Note that we do not
use the entire image because an image patch at the scoop
location contains most of the information needed to evaluate a
scoop, and is much more computationally efficient. The model
architecture is shown Fig. 7. The kernel and mean function
share the same feature extractor, which is a convolutional
neural network, and have separate fully connected layers.

B. Meta-learning with Controlled Deployment Gaps

The neural network parameters and the kernel parameters
of a deep GP can be jointly trained over the entire training

3x3 conv, 32

3x3 conv, 64

3x3 conv, 128

3x3 conv, 256

3x3 conv, 512

FCL, Output 128

3x3 conv, 32

3x3 conv, 64

3x3 conv, 128

3x3 conv, 256

3x3 conv, 512

FCL, Output 128

Leaky ReLU

Leaky ReLU

Leaky ReLU

Leaky ReLU

Leaky ReLU

FCL, [32,64,128]
LeakyReLU

FCL, 
[128,64,32,10,1]

ReLU

FCL, 
[128,64,32,30]

ReLU

Gaussian Process

+

𝑦σ

Deep 
Mean

Deep 
Kernel

Residual

Leaky ReLU

Leaky ReLU

Leaky ReLU

Leaky ReLU

Leaky ReLU

Scoop depth  
and stiffness

RGB-D image patches 
at scooping location

[𝑑, 𝑏]

Scooped VolumeStd Dev

Fig. 7: Model architecture. The deep kernel and the deep
mean share a common feature extractor.“FCL” denotes fully-
connected layers, with the output layer sizes and the activation
function specified. “conv” denotes convolution layers with
filter size and number specified. A stride of 2 is used for all
convolutional filters. The radial basis function kernel is used
for GP.

set with the same NLML loss as Eqn. 3, where θ contains the
neural network parameters.

However, this approach does not typically train kernels
that are well-tuned to individual tasks because it aggregates
the data from all tasks together. Instead, meta-training may
be realized with stochastic gradient descent with each batch
containing the data for a single task, i.e. minimizing the
aggregate loss

∑
i− logP (Dy

i |Dx
i , θ), where Dy

i and Dx
i

are the target variables and input variables of a single task.
We will refer to this approach as Deep Kernel and Mean
Transfer (DKMT) which has been proposed in the meta-
learning literature [10, 31].

DKMT has potential problems with out-of-distribution



tasks. During training, the residuals seen by the kernels are
residuals of the deep mean on the training tasks, which could
be very different compared to the residuals on tasks out of
distribution of the training terrains. As our experiments will
show, this feature leads to the kernels being poorly calibrated
in the worse case. Another potential issue is the over-fitting
of the deep mean function. The first two terms of NLML in
Eqn. 3 are often referred to as the complexity penalty and
data fit terms, where the complexity penalty regularizes the
deep kernels [26]. However, there is no regularization of the
deep mean function. As a result, the deep mean can potentially
overfit on all the training data, so the residuals will be close
to zero.

CoDeGa addresses these issues by encouraging the residuals
seen in kernel training to be representative of the residuals
seen in out-of-distribution tasks with novel materials. The idea
is to separate the training terrains into a mean training set
and a kernel training set, where each set contains different
materials from one another. Then, the mean is trained on the
mean training set to minimize error and the GP is trained on
the residuals of the mean model on the kernel training set.
These residuals are representative of those during deployment
because they are characterized by a deployment gap of novel
materials. However, this limits the amount of training data
available for the mean and kernel. Therefore, we repeat this
process similarly to k-fold cross-validation, in which each fold
has a separate mean model trained on the mean split for that
fold, and then the residuals for that model on the kernel split
are used to define the kernel loss for that fold. A common
kernel is trained using losses aggregated across folds. Finally,
the mean model is trained again on all data.

The overall CoDeGa training procedure is as follows. De-
note the set of all training materials as A and the set of training
datasets as D = {D1, ..., DM}.
1) Split A into K folds A1, ..., AK .
2) Initialize an empty residual training dataset E.
3) For each fold Ak:

a) Split D into a kernel training set Sk
kernel and a mean

training set Sk
mean. Sk

kernel corresponds to terrains that
contain any material in Ak, regardless of the composi-
tion: this means that Sk

kernel can contain terrains with
materials out of Ak for multi-material compositions.
Sk
mean consists of D \ Sk

mean.
b) Train feature extractor weights θkf and deep mean

weights θkm using a mean squared error (MSE) loss on
all the data in Sk

mean. Let these weights be denoted θk.
c) For each dataset Di ∈ Sk

kernel, collect the residuals of
the mean model r̃ji = rji − mθk(xj

i ), j = 1, ..., Ni.
Construct the inputs D̂x

i = Dx
i and the outputs D̂y

i =
{r̃ji | j = 1, ..., Ni} to predict the residuals. E ← E∪D̂i.

4) Train deep kernel parameters θk with database E, i.e. mini-
mizing the aggregate NLL loss −

∑
i logP (D̂y

i |D̂x
i , θ). We

use stochastic gradient descent where each batch contains
all samples in one task. (Note that the associated features
extractor weights for each task need to be loaded and fixed

at the start of each batch training. )
5) Train θf and θm from scratch using standard supervised

learning on all data in the offline database.
The CoDeGa approach could be generalized outside of

the scooping domain by noting that material-based splitting
intends to maximize the gap between the tasks in the mean
/ kernel split. If there are known features of tasks that are
correlated with the latent task variables α, one approach would
be to perform clustering in the feature space to identify large
splits. We hope to explore these avenues in future work.

C. Bayesian optimization decision-maker

To use a reward model in the scooping sequential decision-
making problem, the decision-maker maximizes a score s(o, a)
over the action a: π(o) = argmaxA(o) s(o, a). A greedy opti-
mizer would use the mean as the score, s(o, a) = m(o, a,H)
where m(o, a,H) = E[r|r ∼ p(R | o, a,H)], but this does
not adequately explore actions for which the prediction is
uncertain. Instead, a Bayesian optimizer uses an acquisition
function that also takes uncertainty into account. For example,
the upper confidence bound (UCB) method defines the acquisi-
tion function sUCB(o, a) = m(o, a,H)+γ ·σ(o, a,H), where
σ(o, a,H) = V ar[r|r ∼ p(R | o, a,H)]1/2 is the standard
deviation of the prediction and γ > 0 is a parameter that
encourages the agent to explore actions whose outcomes are
more uncertain.

VI. EXPERIMENTS AND RESULTS

A. Testing Tasks

We evaluate our method on 16 test terrains that contain
out-of-distribution materials and compositions. We introduce
4 new materials, which are Rock, Packing Peanuts, Cardboard
Sheet, and Bedding, described in Tab. I. In addition to the
compositions during training, we also consider the Layers
composition, described in Tab. II. Note that the Cardboard
Sheet material is not scoopable. For each of the Single,
Partition, Mixture, and Layers compositions, we consider 4
terrains. The 4 Single terrains are created with each of the 4
new testing materials. Material combinations on terrains with
the Mixture, Partition, and Layers compositions are randomly
generated but with the constraints that 1) each of the new
materials is selected at least once; 2) each terrain contains
at least 1 new material. We exclude Cardboard Sheet from
Mixture since it is physically impossible to create.

B. Model Training

PyTorch [24] and GPyTorch [11] are used to implement
the neural networks and GP. The Adam optimizer is used
for training. Learning rates of 5e-3 and 1e-2 are used for
the training of the deep mean and deep kernel, respectively.
These values are hand-picked by inspecting the training loss
and are not carefully tuned. For training the mean, 10% of the
training data is used for validation and early stopping based
on the validation loss with patience of 5 is used to select the
training epochs. Early stopping with a patience of 5 based
on the training loss is used to select the training epochs for



the deep kernel. We also apply data augmentation, where for
both mean and kernel training, random vertical flips of the
images are used since flipping vertically would not change
the predicted volume. For mean training, random hue jitter
and random depth noise are also applied. The training process
takes less than 30 minutes on a hardware setup consisting of
an i7-9800x CPU, a 2080Ti GPU, and 64GB of RAM.

C. Simulated Experiments

We perform 2 types of simulated experiments, prediction
accuracy and simulated deployment, on a static test database
to evaluate the performance of our methods against the state-
of-the-art. The test database consists of 100 randomly chosen
scoops on each of the 16 testing terrains

For prediction accuracy, we are evaluating how well each
model predicts scoop volume in the k-shot setting. 80 samples
from each terrain’s data are first randomly drawn to form
the query set. The support set is randomly drawn from the
remaining 20 samples. The prediction accuracy in terms of
mean absolute error (MAE) of the model on the query set
given the support set is evaluated.

For simulated deployment, we evaluate how the model’s
prediction accuracy impacts adaptive decision-making perfor-
mance. In this experiment, we implement a policy that only
selects from the 100 actions in the dataset for the given
test terrain, and the robot receives the corresponding reward
observed in the dataset. A trial begins by observing a single
RGB-D image as input, and the agent executes the policy until
the sample reward is above a threshold B. B is customized
for a given terrain and is defined as the 5th largest reward in
that terrain’s dataset. The Single Cardboard Sheet terrain is
excluded in these experiments because it is not scoopable.

1) Baselines: We compare our method against two state-of-
the-art meta-learning methods and one non-adaptive baseline.
The first method is DKMT [10], with the same deep network
architecture. A learning rate of 1e-2 and early stopping with
patience of 5 based on the training loss is used to select the
epochs. The second method is conditional neural processes
(CNP) [12], which is a non-kernel-based approach that learns
a task representation using the support set and conditions the
prediction on the query set on the learned task representation.
Neural networks of similar width and depth compared to our
proposed neural network architecture are used. During each
epoch in meta-training, each task is randomly split into a
support set of 5 samples and a query set of 95 samples. The
training loss is the NLML on the query set on each task given
the support set. Early stopping with a patience of 5 based on
the validation loss on 6 randomly sampled validation tasks is
used to select the training epoch. For the 0-shot case in CNP,
a zero task representation is used. The last baseline is a non-
adaptive baseline that only uses the deep mean function of our
model.

2) Results: The results are summarized in Tab. III and
Tab. IV. Each model is trained 3 times with different random
seeds and average results across all tasks aggregated over 3
random seeds are reported. For prediction accuracy, in addition

Method 0-shot 5-shot 10-shot 0-shot∗ 5-shot∗ 10-shot∗

CoDeGa 27.4 24.7 23.8 68.4 61.3 60.8
DKMT [10] 25.8 22.1 21.3 103.4 83.6 80.1
CNP [12] 25.7 25.1 25.0 101.4 100.4 100.5
Non-adaptive 27.4 27.4 27.4 68.4 68.4 68.4

TABLE III: Average Prediction MAE. Averages taken across
all test terrains and across 3 random seeds. ∗ indicates MAE
over the 5 samples of largest volume in the query set, averaged
across all test terrains.

Fig. 8: Distribution of MAE reduction from 0-shot to 10-shot
support sets (10% indicates that the 10-shot MAE is 90% of
the 0-shot MAE), over all testing terrains, and aggregated over
3 trained models.

to the average MAE on all query data, we also report the
average MAE of the 5 largest samples in the query set of each
terrain because it is important to predict well on the “good
samples” in a reward-maximizing decision-making setting. To
compare DKMT and CoDeGa on a finer scale, we plot the
distribution of MAE percentage reduction of each terrain from
0-shot to 10-shot support sets on all test terrains, aggregated
over all 3 trained models, in Fig. 8. For simulated deployment,
the adaptive methods are used by a UCB decision maker with
γ = 2, while the non-adaptive baseline sorts actions by the
reward predicted by the mean model and greedily proceeds
down the list.

From Tab. III, we observe that DKMT and CoDeGa have
similar MAE reduction from 0-shot to 10-shot on average,
with DKMT slightly outperforming it. However, CoDeGa out-
performs DKMT in terms of prediction accuracy on the good
samples. In addition, from Fig. 8, we find that DKMT exhibits
a high variance, even degrading significantly in performance
for some terrains from 0-shot to 10-shot adaptation. CoDeGA
outperforms DKMT on the simulated deployment experiments.
On the Single Rocks testing terrain where DKMT suffers the
largest degradation, BO with the DKMT model takes as many
as 44 attempts to reach the threshold in for one of the random
seeds. This is due to incorrect correlations between low-
quality support set samples and samples that are potentially
of high quality. Both CoDeGa and DKMT outperform CNP



Method Avg. Attempts Max. Attempts

CoDeGa 5.2 28
DKMT [10] 6.9 50
CNP [12] 9.6 40
Non-adaptive 8.3 57

TABLE IV: Simulated deployment results. Average and Max
are taken across all testing terrains excluding the Single
Cardboard Sheet terrain, and across 3 random seeds.

Method Avg. Attempts Max. Attempts Success Rate

Ours 3.1 16 100%
Vol-Max 7.3 20 91.1%
Non-adaptive 6.2 20 84.4%

TABLE V: Results from physical experiments over 3 trials
per method on 15 testing terrains. The robot is limited to 20
attempts.

and the non-adaptive approach significantly on both prediction
accuracy and simulated deployment.

D. Physical experiments

Lastly, we evaluate the real-world performance of our
method in physical deployments. Here, the robot has a larger
action set, it executes the scooping sequence as determined by
the optimizer, and each action introduces terrain shifting for
the subsequent action, so the RGB-D image is re-captured
after every scoop. Policies are deployed on the same 15
testing terrains as the simulated experiments and with the same
termination threshold B. For each trial a budget of 20 attempts
is enforced, beyond which the trial is considered a failure.

The action set is a uniform grid over the action parameters,
with 15 x positions (3 cm grid size), 12 y positions (2 cm grid
size), 8 yaw angles, 4 scooping depths, and 2 stiffness, totaling
11520 actions. If robot trajectory planning fails for a scooping
action, the next action that has the highest score is selected
until planning succeeds.

We compare our proposed method (Ours) to the Non-
Adaptive baseline, i.e. only the deep mean, and a volume-
maximizing (Vol-Max) policy, where the action is chosen to
maximize the intersection between the scoop’s swept volume
and the terrain following a strategy proposed recently in the
excavation literature [45]. We note that Vol-Max also does
not adapt. Ours uses a UCB decision maker with γ = 2 and
the CoDeGa model, while Vol-Max and Non-Adaptive use a
greedy decision maker.

Each method is run on each terrain three times. Ours
and Non-Adaptive are tested with three models trained with
different random seeds, while Vol-Max is simply tested 3
times. When deploying the policies on a testing terrain, the
terrain is manually reset at the start of each deployment so that
surface features are consistent across trials. Note that slight
terrain variations are introduced naturally during the reset.

The average and max number of attempts before termination
and success rates for all methods are reported in Tab. V.
Our method outperforms the other two baselines significantly,
achieving a 100% success rate. We show two representative
trials for each of the three methods in Fig. 9. On the Partition
with Gravel and Cardboard Sheet terrain, the deep mean
function predicts higher volumes on the Cardboard Sheet, but
our method is able to quickly adapt. Vol-Max also succeeds,
but requires more attempts since maximizing volume is not the
most optimal policy to scoop Gravel. Non-adaptive causes the
decision-maker to repeatedly select scoops on the Cardboard
Sheet and eventually fail. On the second terrain, Layers
with Packing Peanuts over Slates and Shredded Cardboard,
the deep mean function predicts higher volumes on Packing
Peanuts, but due to the layer of Slates underneath the scoop
jams easily. Our method adapts to this observation in a few
attempts. Vol-Max is able to perform similarly well as our
method because Shredded Cardboard has more prominent
terrain features, resulting in large intersection volumes. As
a result, it always selects to scoop on Shredded Cardboard
but takes 9 attempts to obtain high volumes because Vol-Max
ignores the arrangement of granular particles, which has a
big effect on the scoop outcome. Non-Adaptive takes many
samples on Packing Peanuts, but eventually stops because the
Slates become exposed, and Slates are in the training database
and predicted to yield low volume.

Although our method achieves a 100% success rate, it is
possible to have arbitrary materials, e.g. material with rain-
bow colors, where the kernels correlate support data samples
poorly. In such cases, it is desirable to adapt the kernels online
and we leave this to future work.

VII. CONCLUSION AND FUTURE WORK

This paper introduced a novel method for granular ma-
terial scooping under domain shift that uses a vision-based
deep GP method and a Bayesian optimizer to adapt quickly
to small amounts of on-line data. Our novel meta-training
procedure, Deep Meta-Learning with Controlled Deployment
Gaps, simulates deployment gaps to better train a deep kernel
to cope with large domain gaps than the state-of-the-art.
We demonstrate in real-world experiments that our proposed
approach quickly achieves large scoop volumes on terrains
that are drastically different from those seen in training, and
significantly outperforms non-adaptive methods.

In the future, we would like to explore more complex
rewards, such as the outcome of a scientific assay from a
sample analysis instrument. In addition, the force and torque
the scoop experiences when executing a scoop action could
be very informative about the underlying terrain and we
would like to condition the scooping policy on these as well.
Finally, our current method has no control over the controller
that tracks the scooping trajectory other than the stiffness
parameter. However, a controller that can react and adapt to
terrain in real-time during scooping would further facilitate
adaptation.



First Action Last Action

Ours

Vol-Max

Non-
adaptive

Total AttemptsIntermediate Action

3

9

12

9

20 (fail)

15

90 cm30 cm3

Fig. 9: Example physical trials on two terrains comparing our
method, the Non-Adaptive baseline, and Vol-Max. The terrain
on the top is Partition with Gravel and Cardboard Sheet, while
that on the bottom is Layers with Packing Peanuts over Slates
on the left and Shredded Cardboard on the right. The arrow
indicates executed action while the color indicates the scooped
volume.

ACKNOWLEDGMENT

This work is supported by NASA Grant 80NSSC21K1030.

REFERENCES

[1] Anand Ballou, Xavier Alameda-Pineda, and Chris
Reinke. Variational meta reinforcement learning for
social robotics. ArXiv, 2022.

[2] Sergey Bartunov and Dmitry P. Vetrov. Fast adaptation in
generative models with generative matching networks. In
International Conference on Learning Representations,
2017.

[3] Edwin V Bonilla, Kian Chai, and Christopher Williams.
Multi-task Gaussian process prediction. In Conference
on Neural Information Processing Systems, 2007.

[4] Jörg Bornschein, Andriy Mnih, Daniel Zoran, and Danilo
Jimenez Rezende. Variational memory addressing in
generative models. In Conference on Neural Information
Processing Systems, 2017.

[5] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-
Chiang Frank Wang, and Jia-Bin Huang. A closer look
at few-shot classification. In International Conference on
Learning Representations, 2019.

[6] Siddharth Dadhich, Ulf Bodin, and Ulf Andersson. Key
challenges in automation of earth-moving machines. Au-
tomation in Construction, 68:212–222, 2016.

[7] Siddharth Dadhich, Ulf Bodin, Fredrik Sandin, and Ulf
Andersson. Machine learning approach to automatic
bucket loading. In Mediterranean Conference on Control
and Automation, pages 1260–1265, 2016.

[8] Andreas Damianou and Neil D. Lawrence. Deep Gaus-
sian Processes. In International Conference on Artificial
Intelligence and Statistics, volume 31, pages 207–215,
2013.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep net-
works. In International Conference on Machine Learn-
ing, volume 70, pages 1126–1135, 2017.

[10] Vincent Fortuin, Heiko Strathmann, and Gunnar Rätsch.
Meta-learning mean functions for Gaussian processes. In
NeurIPS workshop on Bayesian Deep Learning, 2019.

[11] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q
Weinberger, and Andrew Gordon Wilson. GPyTorch:
Blackbox matrix-matrix Gaussian process inference with
GPU acceleration. In Conference on Neural Information
Processing Systems, 2018.

[12] Marta Garnelo, Dan Rosenbaum, Christopher Maddi-
son, Tiago Ramalho, David Saxton, Murray Shanahan,
Yee Whye Teh, Danilo Rezende, and SM Ali Eslami.
Conditional neural processes. In International Confer-
ence on Machine Learning, pages 1704–1713, 2018.

[13] Martin Gauch, Maximilian Beck, Thomas Adler, Dmytro
Kotsur, Stefan Fiel, Hamid Eghbal-zadeh, Johannes
Brandstetter, Johannes Kofler, Markus Holzleitner,
Werner Zellinger, Daniel Klotz, Sepp Hochreiter, and
Sebastian Lehner. Few-Shot learning by dimensionality
reduction in gradient space. In Conference on Lifelong
Learning Agents, pages 1043–1064, 2022.

[14] David Ha, Andrew M. Dai, and Quoc V. Le. Hy-
perNetworks. In International Conference on Learning
Representations, 2017.

[15] KP Hand, AE Murray, JB Garvin, WB Brinckerhoff,
BC Christner, KS Edgett, and TM Hoehler. Report of the
Europa lander science definition team. Technical report,
NASA, 2017.

[16] Sepp Hochreiter, A. Steven Younger, and Peter R. Con-
well. Learning to learn using gradient descent. In
International Conference on Artificial Neural Networks,
pages 87–94, 2001.

[17] Jiangli Huang, Shuhan Zhang, Cong Tao, Fan Yang,
Changhao Yan, Dian Zhou, and Xuan Zeng. Bayesian
optimization approach for analog circuit design using
multi-task Gaussian process. In IEEE International
Symposium on Circuits and Systems, pages 1–5, 2021.

[18] Andras Karsai, Deniz Kerimoglu, Daniel Soto, Sehoon
Ha, Tingnan Zhang, and Daniel I. Goldman. Real-Time
Remodeling of Granular Terrain for Robot Locomotion.
Advanced Intelligent Systems, 4, 2022.

[19] G. Koch, R. Zemel, and R Salakhutdinov. Siamese neural

https://arxiv.org/abs/2206.03211
https://arxiv.org/abs/2206.03211
https://openreview.net/forum?id=r1IvyjVYl
https://openreview.net/forum?id=r1IvyjVYl
https://papers.nips.cc/paper/2007/hash/66368270ffd51418ec58bd793f2d9b1b-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3937230de3c8041e4da6ac3246a888e8-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3937230de3c8041e4da6ac3246a888e8-Abstract.html
https://openreview.net/forum?id=HkxLXnAcFQ
https://openreview.net/forum?id=HkxLXnAcFQ
https://www.sciencedirect.com/science/article/pii/S0926580516300899
https://www.sciencedirect.com/science/article/pii/S0926580516300899
https://ieeexplore.ieee.org/abstract/document/7535925
https://ieeexplore.ieee.org/abstract/document/7535925
https://proceedings.mlr.press/v31/damianou13a.html
https://proceedings.mlr.press/v31/damianou13a.html
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://arxiv.org/abs/1901.08098
https://papers.nips.cc/paper/2018/hash/27e8e17134dd7083b050476733207ea1-Abstract.html
https://papers.nips.cc/paper/2018/hash/27e8e17134dd7083b050476733207ea1-Abstract.html
https://papers.nips.cc/paper/2018/hash/27e8e17134dd7083b050476733207ea1-Abstract.html
https://proceedings.mlr.press/v80/garnelo18a.html
https://proceedings.mlr.press/v199/gauch22a.html
https://proceedings.mlr.press/v199/gauch22a.html
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx
https://europa.nasa.gov/resources/58/europa-lander-study-2016-report/
https://europa.nasa.gov/resources/58/europa-lander-study-2016-report/
https://link.springer.com/chapter/10.1007/3-540-44668-0_13
https://ieeexplore.ieee.org/document/9401205
https://ieeexplore.ieee.org/document/9401205
https://ieeexplore.ieee.org/document/9401205
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202200119
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202200119
http://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf


networks for one-shot image recognition. In ICML Deep
Learning Workshop, 2015.

[20] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li.
Meta-SGD: Learning to learn quickly for few-shot learn-
ing. ArXiv, 2017.

[21] Qingkai Lu and Liangjun Zhang. Excavation learning for
rigid objects in clutter. IEEE Robotics and Automation
Letters, 6(4):7373–7380, 2021.

[22] Zhao Mandi, Pieter Abbeel, and Stephen James. On the
effectiveness of fine-tuning versus meta-reinforcement
learning. ArXiv, 2022.

[23] Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. ArXiv, 2018.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. PyTorch]: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Conference on Neural Information Processing
Systems, pages 8024–8035, 2019.

[25] Massimiliano Patacchiola, Jack Turner, Elliot J Crowley,
Michael O Boyle, and Amos Storkey. Bayesian meta-
learning for the few-shot setting via deep kernels. In
Conference on Neural Information Processing Systems,
pages 16108–16118, 2020.

[26] Carl Edward Rasmussen and Christopher K. I. Williams.
Gaussian Processes for Machine Learning. The MIT
Press, 2005.

[27] Sachin Ravi and Hugo Larochelle. Optimization as a
model for few-shot learning. In International Conference
on Learning Representations, 2017.

[28] Prabhakar Ray and Matthew J. Howard. Robotic un-
tangling of herbs and salads with parallel grippers. In
IEEE International Conference on Intelligent Robots and
Systems, pages 2624–2629, 2020.

[29] Scott E. Reed, Yutian Chen, Thomas Paine, Aäron
van den Oord, S. M. Ali Eslami, Danilo J. Rezende,
Oriol Vinyals, and Nando de Freitas. Few-shot autore-
gressive density estimation: towards learning to learn
distributions. In International Conference on Learning
Representations, 2018.

[30] Danilo Jimenez Rezende, Shakir Mohamed, Ivo Dani-
helka, Karol Gregor, and Daan Wierstra. One-shot gen-
eralization in deep generative models. In International
Conference on Machine Learning, pages 1521–1529,
2016.

[31] Jonas Rothfuss, Vincent Fortuin, Martin Josifoski, and
Andreas Krause. PACOH: Bayes-optimal meta-learning
with PAC-guarantees. In International Conference on
Machine Learning, pages 9116–9126, 2021.

[32] Adam Santoro, Sergey Bartunov, Matthew Botvinick,
Daan Wierstra, and Timothy P. Lillicrap. One-shot

learning with memory-augmented neural networks. In
NIPS Deep Learning Symposium, 2016.

[33] Connor Schenck, Jonathan Tompson, Sergey Levine, and
Dieter Fox. Learning robotic manipulation of granular
media. In Conference on Robot Learning, pages 239–
248, 2017.

[34] Siddharth Shrivastava, Andras Karsai, Yasemin Ozkan
Aydin, Ross Pettinger, William Bluethmann, Robert O.
Ambrose, and Daniel I. Goldman. Material remodeling
and unconventional gaits facilitate locomotion of a robo-
physical rover over granular terrain. Science Robotics, 5,
2020.

[35] Sanjiv Sing. Synthesis of tactical plans for robotic
excavation. PhD thesis, Carnegie Mellon University,
1995.

[36] Grigorios Skolidis. Transfer learning with Gaussian
processes. PhD thesis, University of Edinburgh, 2012.

[37] Jake Snell, Kevin Swersky, and Richard Zemel. Proto-
typical networks for few-shot learning. In Conference on
Neural Information Processing Systems, 2017.

[38] H. J. Terry Suh and Russ Tedrake. The surprising
effectiveness of linear models for visual foresight in
object pile. In Workshop on the Algorithmic Foundations
of Robotics, pages 347–363, 2021.

[39] Kuniyuki Takahashi, Wilson Ko, Avinash Ummadisingu,
and Shin-ichi Maeda. Uncertainty-aware self-supervised
target-mass grasping of granular foods. In IEEE Inter-
national Conference on Robotics and Automation, pages
2620–2626, 2021.

[40] Sebastian Thrun and Lorien Pratt. Learning to Learn.
Springer, 1998.

[41] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt,
koray kavukcuoglu, Oriol Vinyals, and Alex Graves.
Conditional image generation with PixelCNN decoders.
In Conference on Neural Information Processing Sys-
tems, 2016.

[42] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray
kavukcuoglu, and Daan Wierstra. Matching networks for
one shot learning. In Conference on Neural Information
Processing Systems, 2016.

[43] Zi Wang, Beomjoon Kim, and Leslie Pack Kaelbling.
Regret bounds for meta Bayesian optimization with an
unknown Gaussian process prior. In Conference on
Neural Information Processing Systems, 2018.

[44] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhut-
dinov, and Eric P. Xing. Deep kernel learning. In
International Conference on Artificial Intelligence and
Statistics, pages 370–378, 2016.

[45] Yajue Yang, Pinxin Long, Xibin Song, Jia Pan, and
Liangjun Zhang. Optimization-based framework for
excavation trajectory generation. IEEE Robotics and
Automation Letters, 6(2):1479–1486, 2021.

http://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://arxiv.org/abs/1707.09835
https://arxiv.org/abs/1707.09835
https://ieeexplore.ieee.org/abstract/document/9484815
https://ieeexplore.ieee.org/abstract/document/9484815
https://arxiv.org/abs/2206.03271
https://arxiv.org/abs/2206.03271
https://arxiv.org/abs/2206.03271
https://arxiv.org/abs/1803.02999
https://arxiv.org/abs/1803.02999
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b9cfe8b6042cf759dc4c0cccb27a6737-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b9cfe8b6042cf759dc4c0cccb27a6737-Abstract.html
https://doi.org/10.7551/mitpress/3206.001.0001
https://openreview.net/forum?id=rJY0-Kcll
https://openreview.net/forum?id=rJY0-Kcll
https://ieeexplore.ieee.org/abstract/document/9342536
https://ieeexplore.ieee.org/abstract/document/9342536
https://openreview.net/forum?id=r1wEFyWCW
https://openreview.net/forum?id=r1wEFyWCW
https://openreview.net/forum?id=r1wEFyWCW
https://proceedings.mlr.press/v48/rezende16.html
https://proceedings.mlr.press/v48/rezende16.html
https://proceedings.mlr.press/v139/rothfuss21a.html
https://proceedings.mlr.press/v139/rothfuss21a.html
https://arxiv.org/abs/1605.06065
https://arxiv.org/abs/1605.06065
https://proceedings.mlr.press/v78/schenck17a.html
https://proceedings.mlr.press/v78/schenck17a.html
https://www.science.org/doi/abs/10.1126/scirobotics.aba3499
https://www.science.org/doi/abs/10.1126/scirobotics.aba3499
https://www.science.org/doi/abs/10.1126/scirobotics.aba3499
https://www.ri.cmu.edu/publications/synthesis-of-tactical-plans-for-robotic-excavation/
https://www.ri.cmu.edu/publications/synthesis-of-tactical-plans-for-robotic-excavation/
https://era.ed.ac.uk/handle/1842/6271
https://era.ed.ac.uk/handle/1842/6271
https://papers.nips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html
https://papers.nips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html
https://link.springer.com/chapter/10.1007/978-3-030-66723-8_21
https://link.springer.com/chapter/10.1007/978-3-030-66723-8_21
https://link.springer.com/chapter/10.1007/978-3-030-66723-8_21
https://ieeexplore.ieee.org/abstract/document/9561728
https://ieeexplore.ieee.org/abstract/document/9561728
https://link.springer.com/book/10.1007/978-1-4615-5529-2
https://papers.nips.cc/paper/2016/hash/b1301141feffabac455e1f90a7de2054-Abstract.html
https://papers.nips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html
https://papers.nips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/41f860e3b7f548abc1f8b812059137bf-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/41f860e3b7f548abc1f8b812059137bf-Abstract.html
https://proceedings.mlr.press/v51/wilson16.html
https://ieeexplore.ieee.org/abstract/document/9351610
https://ieeexplore.ieee.org/abstract/document/9351610

	Introduction
	Related Work
	Granular Material Manipulation
	Meta-learning for Gaussian Process and Bayesian Optimization
	Few-shot Learning via Meta-learning

	Problem Formulation
	Scooping Problem Description
	Proposed Method
	Deep Gaussian Process Model
	Meta-learning with Controlled Deployment Gaps
	Bayesian optimization decision-maker

	Experiments and Results
	Testing Tasks
	Model Training
	Simulated Experiments
	Baselines
	Results

	Physical experiments

	Conclusion and Future Work

