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Abstract— We present a method to transform any opti-
mal stopping time problem with an underlying tree struc-
ture into an s-t min-cut problem on the same tree but
with modified capacities, the details of which are lacking
in existing optimal stopping time research. We also show
that any s-t min/max-cut problem on a tree has an equiv-
alent optimal stopping problem formulation. We provide a
dynamic programming algorithm to solve this problem and
also perform a sensitivity analysis on it. Our results imply
that the s-t max-cut problem on a tree can be solved using
an algorithm with runtime that is linear in the tree size.

Index Terms— Optimization algorithms, Optimization,
Stochastic optimal control.

I. INTRODUCTION

OPTIMAL stopping has seen many applications in the set-
ting of pricing American stock options. However, exact

solutions of these problems using Dynamic Programming (DP)
result in runtimes which are exponential in the time-horizon,
leading instead to efforts on developing approximate solutions;
see, for example, [1]–[4].

We now briefly introduce terminology regarding some graph
problems. The s-t max-flow problem is a network flow prob-
lem with the goal of sending the maximal flow from a node s
to a node t in a graph. The s-t min/max-cut problems consist
of partitioning a graph’s nodes into two sets such that the
weights of the edges across the sets is minimized/maximized.
We provide more detailed definitions in Section II-A.

Chen and Goldberg [4] proposed the equivalence of the
s-t max-flow/min-cut problem on trees to the minimization
optimal stopping time problem infτ E [cτ ], where ct is some
non-negative random process. They note that a maximization
problem can be converted to the minimization problem via

sup
τ

E [cτ ] = c− inf
τ
E [c′τ ] , c′t = c− ct ≥ 0 ,

where c is a uniform upper-bound on ct. Although this is a
valid transformation of the optimization problem, a similar
straightforward transformation of the capacities of the graph
of an s-t max-flow/min-cut problem does not result in an
equivalent s-t max-flow/min-cut solution. In this paper, we
introduce a method to convert maximization or minimization
optimal stopping time problems with objective functions of
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any sign into a min-cut problem via a O(|V |) procedure, where
|V | is the number of nodes in the underlying tree.

Chen and Goldberg [4] also remarked that while max-flow
on trees can be solved via a fast DP algorithm, from the
optimal stopping time perspective, the runtime would generally
be exponential in the time horizon. Nevertheless, we exploit
the equivalence between the optimal stopping time and s-t min-
cut problems to show some useful results. We also provide a
DP algorithm and perform a sensitivity analysis on its solution
in response to incremental changes in the tree capacities.

Furthermore, we show that any s-t min/max-cut problem on
a tree can be transformed into an optimal stopping problem.
This then provides a method for transforming an s-t max-cut
problem on a tree into an equivalent s-t min-cut problem on a
modified version of the tree. This means that s-t max-cut on
trees can be solved exactly using a greedy algorithm. The s-t
max-cut problem on general graphs is an NP-hard problem,
although there are approximation algorithms; see [5], [6].

II. NOTATION AND TERMINOLOGY

We denote 1n to be the vector in Rn of ones. For a set A,
2A denotes the power set of A. For a collection of sets C, we
let σ(C) denote the σ-algebra generated by C.

A. s-t Network Flow and Cut Problems
For a weighted graph, in which each edge has a non-negative

capacity, a maximum s-t flow is the maximum flow from a
“source” node s to a “sink” node t such that the flow through
each edge does not exceed the edge’s capacity. The min s-t
cut is a partition of the graph’s nodes into two sets S and T
such that s ∈ S, t ∈ T , and the sum of the capacities of edges
from S to T , i.e. the “cut”, is minimal. The Max-flow Min-cut
Duality Theorem states that the max s-t flow is equal to the
min s-t cut; see, for example, [7].

In this paper, we refer to s-t max-flow and min/max-cut
problem on trees with a designated root. We trivally convert
a tree T rooted at s into a tree with a sink t by connecting
all leaves of T to t. See Figure 1 for an illustration. For the
weighted max-flow/min-cut problem on a tree, c = ∞.

Definition 1 (s-t Weighted Max-Cut). Let G be a graph with
source s, sink t, and non-negative edge weights. Let S and T
be partitions of the nodes of G such that s ∈ S, t ∈ T . The s-t
max-cut on G is the choice of S and T such that the sum of
the weights of the edges from S to T is maximal.

The transformation in Figure 1 for the s-t max-cut problem
on a tree is obtained by setting c = −∞.
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Fig. 1. Converting a tree rooted at s into one with sink t, by adding
edges from the leaves to t (dashed). The labels are the edge capacities.
For s-t min-cut and max-cut problems, c = ∞ and −∞, respectively.

In general, max-flow and min/max-cut problems assume
edge weights. However, in the stopping time setting, each
node corresponds to a stopping option with a corresponding
cost/reward, so we assume nodal weights. One problem setting
can trivially be converted into the other without changing the
optimal solution, as we show in Section IV.

III. OPTIMAL STOPPING TIME PROBLEM

Let T be the finite time-horizon and let T = {t}Tt=0 be the
set of time-indices. Let Ω = {ωi}k−1

i=0 be a finite sample space
and let F = (Ft)

T
t=0 be a filtration on Ω. Suppose without

loss of generality that F0 = {∅,Ω} and FT = 2Ω. Let P be a
probability measure on Ω, defined at least on FT .

Definition 2 (Stopping Time). For a filtration F on Ω, a
stopping time τ is a T-valued random variable such that {ω ∈
Ω|τ(ω) = t} ∈ Ft,∀t ∈ T. We say that τ is “adapted to” F .
Note that there is an abuse of terminology here, as τ is not a
random process, but a random variable.

Definition 3 (Optimal Stopping Time). Let S be the set of all
stopping times adapted to F . Let c = (ct)

T
t=0 be a random

cost process adapted to F . Let cτ be the random variable such
that cτ (ω) = cτ(ω)(ω),∀ω ∈ Ω,∀τ ∈ S . An optimal stopping
time τ∗ ∈ S is such that

EP[cτ∗ ] = min
τ∈S

EP[cτ ] . (1)

A. Representing Filtrations as Trees
In this section, we represent filtrations as trees, a special

case of representing partially ordered sets (posets) as trees.
See, for example, [8] for a set representation of trees, with
applications to Game Theory.

Definition 4. For a σ-algebra A on Ω, a measurable set A ∈
A is an atomic set if A ̸= ∅ and has no proper subset which
is non-empty and measurable. Intuitively, atomic sets are the
smallest non-empty measurable sets in a σ-algebra.

The sequence of σ-algebras are successive refinements, i.e.
F0 ⊆ · · · ⊆ FT , so we can represent F as a tree of depth T
whose elements are its atomic sets. Any σ-algebra partitions
Ω into equivalence classes.

Definition 5. The tree representation of F , denoted (V,E),
is the tree with vertex set V and edge set E, where

V = {(t, A) : t ∈ T, A is an atomic set of Ft}
E = {((t− 1, B), (t, A))|(t, A) ∈ V, (t− 1, B) ∈ V,A ⊆ B} .

The root node is (0,Ω), and for all other nodes (t, A), its
parent is the unique node (t− 1, B) such that A ⊆ B.

Since FT = 2Ω, Each ω ∈ Ω corresponds to a leaf node
in V . Define the maximal path corresponding to ω to be the
unique path from the root (0,Ω) to the leaf (T, {ω}).

Finally, for any random process X adapted to F , we can
assign the weight Xt(ω) to the node (t, A), where ω ∈ A,∀t ∈
T. Since X is adapted, it does not matter which ω ∈ A is
chosen; hence we will use Xt(A) to refer to Xt(ω),∀ω ∈
A,∀t ∈ T. In particular, this applies to the cost process c, an
example of which is shown in Figure 2.

Fig. 2. Let Ω = {ωi}4
i=0. Consider filtration F = (Ft)T=3

t=0 ,
where F0 = {∅,Ω}, F1 = σ ({ω0, ω1}, {ω2, ω3, ω4}), F2 =
σ ({ω0, ω1}, {ω2, ω3}, {ω4}), and FT=3 = 2Ω. The graph shown
is the tree representation of F . Note how each ω ∈ Ω corresponds to
a leaf. Additionally, the labels next to each node represents the adapted
process c: c0(ω) = 3, ∀ω ∈ Ω, c1(ω0) = c1(ω1) = 1, etc.

B. Tree representation of the Optimal Stopping Problem
Proposition 1. Consider a discrete-time, finite-horizon opti-
mal stopping time problem characterized by (Ω,F , c,P).

Let (V,E) denote the tree representation of F . For each
(t, A) ∈ V , we associate the cost L(t, A) = P(A)ct(A).

Then, the optimal stopping time problem is equivalent to
finding a set B ⊆ V that minimizes

∑
(t,A)∈B L(t, A), subject

to each maximal path having exactly one node in B.

Proof. A stopping time τ adapted to F can be represented as
a subset of nodes M ⊆ V at which to stop:

M = {(t, A) ∈ V |τ(ω) = t, ∀ω ∈ A} .

Conversely, if M ⊆ V contains exactly one node along
each maximal path, then M defines a stopping time: each
ω ∈ Ω corresponds to a maximal path, and there is exactly one
(t, A) ∈ M s.t. ω ∈ A. Thus, we can define the corresponding
stopping time τ : if (t, A) ∈ M , τ(ω) = t, ∀ω ∈ A. The tree
structure forces τ to be adapted to F .

Thus, any optimal stopping time τ∗ will yield an optimal
subset of nodes M∗ = {(t, A) ∈ V |τ∗(ω) = t, ω ∈ A} ⊆ V ,
and any optimal set M∗ ⊆ V will yield an optimal stopping
time τ∗, where τ∗(ω) = t s.t. ω ∈ A, (t, A) ∈ M∗.

It is worth noting that the cost associated with node (t, A) ∈
V is not just the realized value ct(A), but rather ct(A)
weighted by P(A). The tree representation of an optimal
stopping time problem is shown in Figure 3.

C. The Secretary Problem: an Example
An example of the optimal stopping time problem is the

Secretary Problem (see, for example, [9]): a manager can only
hire one out of n secretaries. The manager interviews the



Fig. 3. Using the same filtration as in Figure 2, the stopping time τ
corresponds to the colored nodes: τ(ω0) = τ(ω1) = 1, τ(ω2) =
τ(ω3) = 2, and τ(ω4) = 3. On the right is the binary matrix
representation of τ . In each column, the values are all the same within
each atomic set, capturing the measurability constraint. Across each
row, there is exactly one entry which is 1, ensuring that exactly one
stopping time τ(ω) is assigned to each ω.

secretaries in a random order, and must make the decision to
reject or hire each secretary right after the interview. Decisions
are final, and if the manager hires a secretary, the remaining
candidates will no longer be considered. The objective is to
maximize the probability of choosing the best secretary.

After each interview, the manager gains more information
about the relative rankings of the secretaries (assuming no
ties). The time horizon is T = n−1. Each time t corresponds
to depth t in the filtration tree. Let the “reward” of node v
be the probability of hiring the best secretary if stopping at v,
weighted by P ({ω ∈ v}). Let a < b mean that secretary
a ranks lower than secretary b. At t = 0 is the root, or
the singleton ranking of secretary 1, with reward 1

n · 1 (this
node represents Ω, and secretary 1 is ranked first in (n− 1)!
rankings). At t = 1, there are two nodes, or scenarios: 1 < 2
with reward 2

n · 12 = 1
n and 2 < 1 with reward 0, and so on. Ω

is the set of all rankings of the n secretaries, so the number
of leaves is |Ω| = n!. The size of the filtration tree is

∑n
i=1 i!.

IV. OPTIMAL STOPPING TIME AS A MIN-CUT PROBLEM

In this section, we show that the optimal stopping problem
is equivalent to an s-t min-cut problem and frame it as a
mixed-integer linear program (MILP), whose structure reveals
some properties of s-t cut problems, which we will explore in
Section V. Chen and Goldberg [4] showed the equivalence
of the optimal stopping problem to the max-flow problem
on a tree; here, we directly show equivalence to the min-cut
problem on a tree, which is the dual of the max-flow problem.

Proposition 2 (Optimal stopping is equivalent to min-cut).
Consider the node selection problem in Proposition 1. We add
a source node s0 and sink node s1 to (V,E) as follows:

Ṽ = V ∪ {s0, s1}
Ẽ = E ∪ (s0, (0,Ω)) ∪

(⋃
ω∈Ω((T, {ω}), s1)

)
L̃(e) =

{
∞ v = s1

L(v) otherwise
, ∀e = (u, v) ∈ Ẽ .

The node selection problem is equivalent to the min-cut
problem on a tree (Ṽ , Ẽ) with capacities L̃.

Proof. Note that maximal paths of (V,E) correspond to s0-s1
paths in (Ṽ , Ẽ), and a min-cut will choose exactly one edge
on each maximal path, giving a bijection between feasible sets

with the same costs. Furthermore, no edge ending in s1 will
be chosen, and the desired result follows.

The node selection problem in Proposition 1 naturally lends
itself to a MILP with |V | binary variables, each of which
represents whether a node is included. However, we will
formulate this problem with some redundant variables; this has
a nicer interpretation from a probability space perspective.

Since Ω is finite, we can represent random variables on
Ω as elements of R|Ω| = Rk, and denote the inner product
⟨X,Y ⟩ = EP[XY ] for random variables X and Y on the
same probability space. In particular, EP[X] = ⟨1k, X⟩.

Furthermore, each σ-algebra A can be equivalently viewed
as the subspace of all A-measurable random variables, so that
the conditional expectation E[·|A] is simply the projection
onto this subspace with respect to the aforementioned inner
product. For our filtration F , we will represent these projec-
tions as the linear operators Pt, where PtX = E[X|Ft].

Proposition 3 (MILP reformulation of the optimal stopping
problem). The stopping time τ∗ is a solution to the optimal
stopping problem in (1) if and only if the corresponding binary
matrix S∗ is an optimizer of the following MILP:

min
S∈{0,1}k×(T+1)

∑
t∈T

⟨St, ct⟩

s.t.
∑
t∈T

St = 1k

(I − Pt)St = 0 for all t ∈ T .

(2)

Proof. A stopping time τ can be represented as binary matrix
S ∈ {0, 1}k×(T+1), with the interpretation that τ(ω) = t if
and only if St(ω) = 1. Here, we let St(ω) denote the entry in
the ωth row and tth column. For a binary matrix S to represent
a valid stopping time, we have two constraints:

1) Each row of S has exactly one non-zero entry; i.e. for
each ω ∈ Ω, exactly one time index in T is chosen.

2) PtSt = St,∀t ∈ T, representing that S is adapted to F ;
this is equivalent to St = E[St|Ft],∀t ∈ T.

If S ∈ {0, 1}k×(T+1) represents a stopping time τ , then

EP[cτ ] =
∑
t∈T

⟨St, ct⟩ .

These constraints and objective are incorporated into (2).

Figure 3 shows an example of the matrix S.
Additionally, the linear program (LP) relaxation of this

problem is exact, for the same reasons that min-cut programs
can be solved as LPs. In the LP relaxation of (2), the constraint
on S to be a binary matrix is replaced by S ∈ [0, 1]k×(T+1).
We will not give the full proof of the equivalence here, but
at a high-level, unimodularity of the constraint matrices is
sufficient for exactness of the LP relaxation of an MILP, and
the constraints arising from a min-cut problem satisfy the
unimodularity property. See, for example, [7] for details.

V. EQUIVALENT TRANSFORMATIONS FOR MIN-CUT

We show through the particular structure of the MILP
formulation (2) that an optimal stopping time problem with



either a minimization or maximization objective and objective
costs with arbitrary signs can be formulated into a min-cut
problem on the same underlying tree structure.

A max-cut problem (corresponding to a maximization ob-
jective with non-negative rewards) on a tree can be trans-
formed into an equivalent min-cut problem (corresponding to
a minimization objective with non-negative costs) in O(|V |)
time, where |V | is the number of nodes in the tree. In fact,
we show that the min/max-cut problem on any tree can be
formulated as an optimal stopping time problem, and so any
s-t max-cut problem on a tree can be solved in linear time. In
Section VI, we provide a O(|V |) min-cut algorithm.

A. Transformation of Tree Capacities
We now find an equivalent formulation to (2). Define

D =


P (ω0) 0 . . . 0

0 P (ω1) . . . 0
...

...
. . .

...
0 0 . . . P (ωk−1)

 (3)

C =

 c0 c1 . . . cT

 . (4)

Proposition 4. Let ∆ ∈ Rk be a vector of increments s.t.
C + ∆1T

T+1 ≥ 0. In the underlying tree of (2), P (ωi)∆i is
added to the capacity of the leaf u corresponding to ωi ∈ Ω,
as well as to those of u’s ancestors. Replacing the objective
of (2) with ⟨D(C + ∆1T

T+1), S⟩F results in an equivalent
problem, where ⟨·, ·⟩F is the Frobenius inner product.

Proof.

⟨D(C+∆1T
T+1), S⟩F = ⟨DC,S⟩F + ⟨D∆1T

T+1, S⟩F

=
∑
t∈T

⟨St, ct⟩+
k−1∑
i=0

P (ωi)∆i

∑
t∈T

St(ωi)

=
∑
t∈T

⟨St, ct⟩+
k−1∑
i=0

P (ωi)∆i ,

where the last equality is due to the constraint S1k = 1k

in (2). Hence, the objective function of (2) is shifted by a
constant, so the solution to (2) is unchanged.

Figure 4 shows an example of an Optimal Stopping Time
tree, with original capacities displayed inside the nodes.

Let us see how to transform the capacities of this tree:

D(C +∆1T
T+1) = DC +D∆1T

T+1

=

 P (ω0)c0 P (ω0)c1,0 P (ω0)c2,0
P (ω1)c0 P (ω1)c1,0 P (ω1)c2,1
P (ω2)c0 P (ω2)c1,1 P (ω2)c2,2


+

 P (ω0)∆0 P (ω0)∆0 P (ω0)∆0

P (ω1)∆1 P (ω1)∆1 P (ω1)∆1

P (ω2)∆2 P (ω2)∆2 P (ω2)∆2

 .

(5)

The horizontal and vertical lines in the capacity matrix form
regions, each of which corresponds to a node in Figure 4.
The capacity of each node is the sum of the capacities in its

c0 +P (ω0)∆0 + P (ω1)∆1 + P (ω2)∆2

c1,1P (ω2)+P (ω2)∆2 c2,2P (ω2)

+P (ω2)∆2

ω2

c1,0 (P (ω0) + P (ω1))

+P (ω0)∆0 + P (ω1)∆1

c2,1P (ω1)

+P (ω1)∆1

ω1

c2,0P (ω0)

+P (ω0)∆0

ω0

Fig. 4. An Optimal Stopping Time tree with the original capacities in
each node. The leaves correspond to elements of Ω. The label next to
each node corresponds to a modification of the node’s capacity which
altogether result in an equivalent min-cut problem as long as the ∆(·)
are chosen so that the transformed capacities are all non-negative.

corresponding region in the matrix. The capacities inside the
nodes correspond to entries of DC and the labels next to the
nodes correspond to the entries of D∆1T

T+1 in (5).
We can generalize from the above example. First, we define

some methods:

Definition 6. Let T , T ′ be two trees over the same vertex and
edge set, with root s. The nodal capacities may differ.

subtree(v): the tree rooted at node v. subtree(v) ⊆ T .
leaves(v): the set of leaves in subtree(v). For a leaf u,

leaves(u) = {u}. leaves(s) is simply the set of leaves of T .
cap(v): the capacity of node v in T .
cap′(v): the capacity of node v in T ′.

For our setting, T is the underlying tree of a minimiza-
tion optimal stopping time problem (a maximization problem
would flip the signs of the capacities). For any v ∈ T , cap(v)
is possibly negative, and includes the probabilities of the nodes
in leaves(v), as given by DC from (3) and (4).

Procedure 1. Let T be a tree rooted at s with vertex set V . Let
∆v ∈ R be such that cap′(v) = cap(v) + ∆v . The following
sequence of steps transforms a min/max-cut problem on T into
an equivalent min-cut problem on T ′:

1) ∀u ∈ leaves(s), let cap′(u) = cap(u) + ∆u.
2) Iteratively process all children of a node before process-

ing the node: for v ∈ V , let p be v’s parent, and let ∆p

be initialized to 0. Update ∆p = ∆p +∆v .
After processing each v ∈ V , cap′(v) = cap(v) +∑

u∈leaves(v) ∆u. For a valid min-cut formulation on T ′,
∆u,∀u ∈ leaves(s) must be such that cap′(v) ≥ 0,∀v ∈ V .

Procedure 1 is a O(|V |) DP algorithm, as each node is
processed exactly once.

B. Generalization to s-t Min/Max-Cut on any Rooted Tree
We will use Definition 6 in addition to the following:

Definition 7. Let T be a tree rooted at s. Let node v ∈ T .
path(v): the path from s to v. Let |path(v)| be the number

of nodes in path(v). In particular, |path(s)| = 1.

Proposition 5. Let T be a tree rooted at s. There is an O(|V |)
algorithm which can transform an s-t max-cut problem on T
to an equivalent s-t min-cut problem.



Proof. Let Su ∈ {0, 1}|path(u)|,∀u ∈ leaves(s) be the vector
indicating where on path(u) the min-cut is. The entries in
Su which correspond to the same node must be equal. For
instance, Su

0 , the first element of Su, corresponds to s,∀u ∈
leaves(s), and so Su

0 must agree, ∀u ∈ leaves(s).
Let cu ∈ R|path(u)|,∀u ∈ leaves(s) be the effective capacity

of the nodes along path(u). Let cui be the ith entry of cu; then,
letting v be ith node on path(v), cui = cap(v)

|leaves(v)| .
The equivalent MILP formulation of the problem is

min /max
Su,∀u∈leaves(s)

∑
u∈leaves(s)

(cu)TSu

s.t. Su ∈ {0, 1}|path(u)|,∀u ∈ leaves(s)

1T
|path(u)|S

u = 1,∀u ∈ leaves(s)

constraints on Su to enforce T ’s structure .

(6)

Let ∆u ∈ R. We see that, similar to the proof of Proposition
4, replacing cu by cu+∆u1|path(u)| in the objective of (6) does
not change the solution, so Procedure 1 is still valid.

The s-t max-cut problem on a tree can be converted to an
equivalent s-t min-cut problem in O(|V |) time and solved in
O(|V |) time using the s-t min-cut algorithm in Section VI.

VI. ALGORITHM FOR S-T MIN-CUT ON TREES

We show that a DP algorithm finds the s-t max-flow/min-
cut on trees. Let us now introduce some terminology used in
Dinitz’s algorithm [10], which is defined for graphs with edge
capacities. However, our subsequent procedure assumes the
optimal stopping setting: trees with nodal capacities.

Definition 8. Consider a graph G(V,E) with source s and
sink t, where V is the vertex set and E is the edge set of G.

dist(v): the number of edges in the shortest path from s to
v ∈ V . Note that the distance from s to v does not take into
account the edge weights along the s-v path.

level graph: a graph composed of a subset of E comprised
of only the edges which are “leading away” from s: an edge
(u, v) ∈ E is in the level graph if dist(v) = dist(u) + 1. In
other words, v is farther away from s than u is. In general, a
graph may be different from its level graph.

saturated edge: an edge is saturated if the flow through
that edge is already equal to its maximal value, the edge’s
capacity; i.e. no additional flow can be sent through the edge.

blocking flow: an s-t flow on G such that each s-t path
has at least one saturated edge. Intuitively, this means that no
extra flow can be sent along each s-t path.

As noted in [4], a blocking flow of a tree is a max-flow. We
now provide one way of justifying this claim:

Proposition 6. For a tree T rooted at s whose leaves are
connected to a sink t (as described in Section II-A), an s-t
blocking flow on T is the s-t max-flow of T .

Proof. At a high level, Dinitz’s algorithm performs the fol-
lowing steps for a general graph G:

Initialize L to be the level graph of G.

1) Find a blocking flow of L. Reduce the capacity of each
edge in L by the flow through that edge. Remove edges
from L which have 0 capacity (the saturated edges).

2) Introduce any new edges into L from G that previously
were not eligible to be in L, but become eligible after
the removal of the saturated edges in Step 1.

3) Repeat steps 1 and 2 until L contains no s-t path.
For a tree T , Dinitz’s algorithm terminates after Step 1. This
is because T ’s level graph is exactly T ; after Step 1, each leaf
in T is no longer reachable from s. Thus, Dinitz’s algorithm
terminates and the blocking flow is optimal for T .

A blocking flow can be found by greedily sending flow
along the paths from the root to the leaves in a tree until each
path has at least one saturated edge. This can be implemented
via a DP algorithm. First, we introduce some notation. We
will refer to subtree and cap as defined in Definition 6.

Definition 9. Consider a tree T rooted at s.
max cap(v): the maximum flow through subtree(v).
cap children(v): the sum of max cap of the children of v.

For all leaves u ∈ T , cap children(u) = cap(u). For all other
nodes v ∈ T , cap children(v) is initialized to be 0.

Procedure 2 (s-t Min-cut on tree). Let T be a tree rooted at
s. Instead of introducing a sink t, we will directly refer to T ’s
leaves. We also assume nodal, instead of edge, capacities.

1) Beginning with the leaves of T , iteratively process all
children of a node v before v:

a) The maximum flow through v cannot exceed the
sum of the maximum flows through its children:
set max cap(v) = min(cap(v), cap children(v)).

b) Let p be the parent of v. Update cap children(p):
cap children(p) = cap children(p) + max cap(v).

Terminate after processing s.
2) At this point, a node v is saturated if max cap(v) =

cap(v). The min-cut is comprised of the saturated nodes
closest to s. In other words, if v is in the min-cut, then
no descendant of v can also be in the min-cut.

Step 1 takes O(|V |) time. Step 2 requires a O(|V |) pro-
cedure to identify the elements of the min-cut, via a graph
traversal algorithm such as Depth- or Breadth-First Search.
Thus the overall runtime of Procedure 2 is O(|V |).

A. Sensitivity Analysis
Assume the optimal stopping time problem has already been

solved via Procedure 2, and there is a change in cost for a
certain node in the tree. Then, the new optimal stopping time
solution may be obtained with a minimal amount of work,
instead of running Procedure 2 on the entire tree with the
incremental change.

We use Definitions 6, 7, and 9, in addition to the following:

Definition 10. Let T be the original underlying tree structure,
and T ′ be identical to T except that the capacity for one node
v changes. Let G be one of T or T ′.

min cut(G): the nodes in the min-cut of graph G.
max flow(G): the maximum flow through G.



Furthermore, when we say v is “above” min cut(T ), we
mean that no node along path(v) is part of min cut(T );
instead, a subset of nodes in subtree(v) are necessarily part of
min cut(T ). Likewise, when we say v is “below” min cut(T ),
∃u ̸= v ∈ min cut(T ) s.t. u is an ancestor of v and is on
path(v). Note that max cap(u) and cap children(u) for u ̸= v ∈
subtree(v) remain unchanged in T ′; however, these values can
change for nodes along path(v).

1) Case 1: cap(v) < cap′(v):

• v ∈ min cut(T ): min cut(T ′) may differ from
min cut(T ). max cap(u) and cap children(u) must be
recalculated for each node u along path(v).

• v is above min cut(T ): min cut(T ) = min cut(T ′). The
maximal flow through subtree(v) is restricted by the sat-
urated nodes below v, so max flow(T ) = max flow(T ′).

• v is below min cut(T ): min cut(T ) = min cut(T ′). The
ancestor u of v is still restricted by the same capacity in
T ′, and so again max flow(T ) = max flow(T ′).

2) Case 2: cap(v) > cap′(v): Any ancestors of v which are
unsaturated in T remain unsaturated in T ′ since the flow
through them can only decrease or remain unchanged in T ′.

• v ∈ min cut(T ): v remains saturated in T ′ so min cut(T )
= min cut(T ′).

• v is above min cut(T ): Let M = subtree(v) ∩
min cut(T ). If v becomes saturated in T ′, min cut(T ′) =
(min cut(T )∪{v})\M . Otherwise, for any u ∈ subtree(v)
which is above M , the flow through u can only decrease
or stay the same and so u remains unsaturated. In this
case, min cut(T ) = min cut(T ′).

• v is below min cut(T ): min cut(T ′) may differ from
min cut(T ). max cap(u) and cap children(u) must be
recalculated for each node u along path(v).

Note that checking whether v is above or below the min-cut
takes O(T ), where T is the time horizon, or the depth of T .
This can be accomplished by traversing path(v) and checking
if there are any ancestors of v which are saturated.

Recalculating max cap(u) and cap children(u) for any node
u ∈ path(v) also takes O(T ), since only the difference between
max cap(v) in T ′ and T is needed to update the two values.
However, if min cut(T ′) ̸= min cut(T ), finding the saturated
nodes closest to s in T ′ again takes O(|V |).

We have thus shown that for an incremental change in
capacity of node v, in the best case the solution remains
unchanged and only an O(T ) traversal is required to find v’s
position relative to the min-cut. In the worst case, an O(|V |)
procedure is required to update the solution.

VII. NUMERICAL SIMULATIONS

We implemented the procedures in this paper and solved
the Secretary Problem, the details of which are explained
in Section III-C. We compared the runtimes of Procedure 2
and the LP relaxation of the MILP (2) described in Section
IV. Figure 5 displays the runtimes of solving the Secretary
Problem for various problem sizes n, i.e. the number of
secretaries. The size of the underlying filtration tree is also
plotted for each n. The O(|V |) DP algorithm is reasonably

fast for all n we attempted, however, solving the LP becomes
unmanageable as the filtration tree explodes in size.

We used Gurobi Optimizer to solve the LP. All simulations
were performed on an Intel® Xeon® Platinum 8272CL CPU
@ 2.60GHz processor.

Fig. 5. Comparison of runtimes of the Linear Program and Dynamic
Programming algorithm on the Secretary Problem, for various problem
sizes. The scale for the tree sizes is shown on the right axis. The labels
next to the data points are the corresponding tree sizes.

VIII. CONCLUSION

We have shown that any optimal stopping problem on a tree
structure can be transformed into an s-t min-cut problem and
solved in time linear in the underlying tree size. However, the
tree size is often exponential in the time-horizon, in which
case our algorithm may not be a practical solution. Future
research directions may include adapting our results to develop
sub-optimal solutions to large problems for which the exact
solution is difficult to compute.

Furthermore, we have only considered the finite probability
space setting. A potential further development would be to
extend our results to the infinite-dimensional case.

Finally, our work may prove useful (especially the sensitiv-
ity analysis) in applications in which the optimal stopping time
problem is the lower-level of a bilevel problem. For example,
a seller decides on a pricing strategy subject to a consumer’s
decision of the optimal time to make a purchase.
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