
Safety-Guaranteed, Accelerated Learning in MDPs with Local Side
Information*

Pranay Thangeda and Melkior Ornik

Abstract— In environments with uncertain dynamics, synthe-
sis of optimal control policies mandates exploration. The appli-
cability of classical learning algorithms to real-world problems
is often limited by the number of time steps required for learn-
ing the environment model. Given some local side information
about the differences in transition probabilities of the states,
potentially obtained from the agent’s onboard sensors, we
generalize the idea of indirect sampling for accelerated learning
to propose an algorithm that balances between exploration
and exploitation. We formalize this idea by introducing the
notion of the value of information in the context of a Markov
decision process with unknown transition probabilities, as a
measure of the expected improvement in the agent’s current
estimate of transition probabilities by taking a particular action.
By exploiting available local side information and maximizing
the estimated value of learned information at each time step,
we accelerate the learning process and subsequent synthesis
of the optimal control policy. Further, we define the notion
of agent safety, a vital consideration for physical systems, in
the context of our problem. Under certain assumptions, we
provide guarantees on the safety of an agent exploring with
our algorithm that exploits local side information. We illustrate
agent safety and the improvement in learning speed using
numerical experiments in the setting of a Mars rover, with
data from onboard sensors acting as the local side information.

I. INTRODUCTION

The problem of controlling a physical system in an un-
known environment is of significant practical interest [1], [2].
The agent is required to learn, in some way, the underlying
dynamics of the environment before planning an optimal
solution for its objective. Learning in unknown environments
has been studied extensively and several approaches exist
in the literature [3], [4], [5]. Environments with unknown
dynamics are often modeled as Markov decision processes
(MDPs). In the MDP framework, existing algorithms such
as those in the class of Probably approximately correct in
Markov decision processes (PAC-MDP) [6], [7] and Bayesian
exploration bonus (BEB) [8] find the optimal policy by
setting up a trade-off between exploring previously unvisited
states to gain additional information about the environment
and exploiting the current knowledge to maximize reward.
However, these algorithms do not use any prior or side in-
formation about the transition probabilities thereby requiring
an impractical number of samples to build an accurate model
of real-world problems.

*This work was supported by NASA’s Space Technology Research Grants
program for Early Stage Innovations under the grant ’Safety-Constrained
and Efficient Learning for Resilient Autonomous Space Systems.’

Pranay Thangeda and Melkior Ornik are with the Department of
Aerospace Engineering and the Coordinated Science Laboratory, Uni-
versity of Illinois at Urbana-Champaign, Urbana, USA. {pranayt2,
mornik}@illinois.edu.

In order to expedite learning, [3] proposes an algorithm
that uses additional information in the form of bounds on
differences between transition probabilities of states to partly
reuse the collected samples. In other words, every sample
collected by an agent is counted directly at its current state
and, with some weight, at other states that have similar
transition probabilities. While such an approach improves the
sample collection rate, the assumption of prior knowledge
about similarity between all the states is unrealistic in most
problems. For an agent operating in an environment that
requires it to perform tasks autonomously, it is rational to
assume that the side information can only be gathered using
limited onboard resources. We illustrate this by considering
the environment of a Mars rover, a setting we use as a
running example throughout this paper. In this case, the
information assumed by [3] would need to be available a
priori for the entire environment, whereas the local side
information is based on the data the rover collects online
using its onboard sensors. Side information, if available,
is usually restricted to the immediate neighborhood of the
agent.

Exploration algorithms, while learning the state transi-
tion probabilities by visiting all state-action pairs, fail to
account for the safety of the agent. Safety is an important
consideration, particularly for agents operating in physical
environments where even a single unsafe action could be
harmful not only to the agent but also to the other elements
in the environment. While safety during learning is an active
area of research and several different notions of safety have
been studied [9], [10], [11], guarantees of safety are either
provided by explicitly considering safety in the optimality
criterion or by assuming some external knowledge or risk
metric, both of which limit their generalizability.

The two central contributions of this paper are as follows.
First, we generalize the framework of indirect sampling
proposed in [3] to environments where agents have access to
local side information and propose an exploration bonus that
maximizes the value of information gain at each state during
learning. The second important contribution is a definition
of safety relevant to the context of an agent with local side
information with guarantees on its safety while operating
with the proposed algorithm.

Notation: For a finite set S, |S| denotes its cardinality,
for a subset D ⊂ S, Dc denotes its complement; Dc = {s ∈
S|s /∈D}. For x,y∈Rn, ‖x‖p denotes the p-norm, and d(x,y)
denotes the Euclidean distance between x and y.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

II. PRELIMINARIES

We consider problems where the real environment is
specified by a finite horizon, undiscounted Markov Decision
Process (MDP) M = (H,S,A,P,R). H ≥ 0 is the time
horizon, S is the finite state space, A is the finite action
space, P : S ×A×S → [0,1] is the unknown state transition
probability function, and R : S ×A → [0, R̄] is the reward
function which we, without loss of generality, assume to
be known. At any state s ∈ S, the agent takes an action
a ∈ A and proceeds to next state based on the distribution
P(.|s,a) while collecting a reward R(s,a). A policy π is
a mapping from states to actions that specifies a decision-
making strategy. The state-value of a policy for a state
is defined as the expected sum of rewards over the next
H time steps V π

H (s) = E
[
∑

H
t=1R(st ,π(st))|s1 = s

]
and the

action value is defined as the expected sum of rewards by
taking an action a and then following the policy Qπ

H(s,a) =
R(s,a)+E

[
∑

H
t=2R(st ,π(st))

]
. Further, the state value can

be expressed in the recursive Bellman equation form

V π
H (s) =R(s,π(s))+∑

s′
P(s′|s,a)V π

H−1(s
′).

We seek a policy that maximizes the state value. The
optimal policy π∗ can be obtained by solving the Bellman’s
optimality equation in state value form

V ∗H(s) = max
a

[R(s,a)+∑
s′
P(s′|s,a)V ∗H−1(s

′)]

where π∗(s) is simply the action a that maximizes state value
at s. For an MDP with known transition probabilities and
reward function, the optimal state value can be obtained by
solving the above equation using classical planning algo-
rithms [12].

Algorithms such as those in the class of PAC-MDP [13]
and BEB [7] achieve the balance between exploration and
exploitation by complementing reward with an exploration
bonus. Unknown state transition probabilities are estimated
from the samples generated by the transition probability
distribution during exploration. Formally, let α(s,a) denote
the number of samples where the agent performed an action
a in the state s and α(s′|s,a) denote the number of those
instances where the resultant state was s′ ∈ S. Then the
estimate of the transition probability P(s′|s,a) is given as
P̂(s′|s,a) = α(s′|s,a)/α(s,a). At every time step, an action
taken by the agent contributes exactly one sample using the
above-mentioned algorithm, referred to as direct sampling. A
state-action pair (s,a) is considered to be known if α(s,a)≥
m, for some fixed threshold m ∈ N. This consideration is
justified as one can use large deviation inequalities to ensure
that the estimated transition probabilities closely represent
the true dynamics making further sampling unnecessary [8].
Therefore, learning the environment model accurately would
require collecting at least m|S||A| samples, an impractical
number in problems with large state and action spaces. The
next section describes an algorithm to overcome this issue
by exploiting additional information available to the agent
about the states in its neighborhood.

III. LEARNING WITH LOCAL SIDE INFORMATION

In this section, we introduce the notion of local side
information and propose an algorithm that exploits it to
accelerate learning in MDPs. Even in the environments
where we lack the knowledge of the exact features-dynamics
relationship, we could still exploit the similarity as states
with similar features are likely to have similar dynamics.
Given some measure of similarity between states that reflects
the similarity in their dynamics, we could partially reuse an
observation at multiple states thereby increasing the sample
collection speed – a framework originally introduced in [3]
and referred to as indirect sampling. To formalize the notion
of side information, we first define a measure of similarity
between transition probabilities of states and then use it to
quantify the extent of sample reusability between states. As
stated earlier, these definitions were first introduced in the
author’s previous work and presented here for the sake of
completeness.

Definition 1. Let s, s̄ ∈ S, and let 0≤ ε ≤ 1. States s and s̄
are ε-distant if there exists a permutation Π : S → S such
that |P(s′|s,a)−P(Π(s′)|s̄,a)| ≤ ε for any s′ ∈ S and any
a ∈ A.

Intuitively, Π in the above definition encodes similar
movement – in the context of our running example, if
executing an action a in state s is expected to take the rover
to a state s′ immediately north of s, then Π(s′) is the state
immediately north of s̄. Although Π depends on both s and
s̄, to simplify notation, we emphasize the dependency on s̄
only when necessary. We also define ∆ :S×S → [0,1] so that
∆(s, s̄) is the smallest value such that s, s̄ are ∆(s, s̄)-distant.
We now introduce weighting function in Definition 2 as a
measure of sample reusability given knowledge of distance
∆ between the transition probabilities of states.

Definition 2. Function w : [0,1]→ [0,1] is a weighting func-
tion if it is monotonically decreasing and satisfies w(0) = 1
and w(1) = 0.

To simplify the notation, we define ω(s, s̄) = w(∆(s, s̄))
for any s, s̄ ∈ S. We assume that, given current state of the
agent s, we have knowledge of ∆(s, s̄) for all s̄ : d(s, s̄)≤ λ

where λ , the observation radius, denotes the range of agent’s
onboard sensors. We note that this is a generalization of the
approach proposed in [3], and for a large enough observation
radius the two notions are equivalent. Apart from the local
side information, our framework can also utilize any prior
information available to obtain an initial estimate of the
weights. The prior information, for example, could be the
sparse terrain characteristics data obtained from an orbiter.

The generalized algorithm for weighted indirect sampling
using local side information, given weighting function ω ,
is presented as Algorithm 1. Any weights obtained from
prior information are denoted by φ0 and in the case where
no prior information available, φ0(s, s̄) = 0 ∀s, s̄ ∈ S . At
every time step, the algorithm uses the current state, current
action, and the resultant state triad, (s,a,s′), to update the

corresponding direct sample counts, α(s,a) and α(s′|s,a).
The direct sample counts and the weighting function are then
used to update #(s,a) and #(s′|s,a), the effective number
of samples (i.e., both direct and indirect weighted) at state-
action pair (s,a) and the number of such samples leading
to s′ or equivalent (i.e., Π(s′)) state. The effective sample
counts are then used to estimate the transition probabilities,
as detailed in Algorithm 1. We note that irrespective of the
similarity between states, the above algorithm at minimum
increases the overall sample count by one, as at the current
state of the agent s, ω(s,s) = 1. Hence, the indirect sampling
algorithm collects samples at least as quickly as direct sam-
pling. While any function satisfying Definition 2 can be used

Algorithm 1 Weighted indirect sampling
1: Let α(s′|s,a) = 0 for all s,s′ ∈ S,a ∈ A.
2: Let α(s,a) = 0 for all s ∈ S,a ∈ A.
3: Let #(s′|s,a) = 0 for all s,s′ ∈ S,a ∈ A.
4: Let #(s,a) = 0 for all s ∈ S,a ∈ A.
5: Let φ(s, s̄) = φ0(s, s̄) for all s, s̄ ∈ S ,
6: repeat at each time step
7: Let s be current state of the system
8: Let a be the performed action
9: Let s′ be the resulting state of the system

10: for all s̄ : d(s, s̄)≤ λ do
11: φ(s, s̄) = ω(s, s̄)
12: end for
13: α(s′|s,a) := α(s′|s,a)+1
14: α(s,a) := α(s,a)+1
15: for all s̄, s̄′ ∈ S do
16: #(Π(s′)|s̄,a) := ∑s̄′ α(Π(s′)|s̄′,a)φ(s̄, s̄′)
17: #(s̄,a) := ∑s̄′ α(s̄′,a)φ(s̄, s̄′)
18: if #(s̄,a)> 0 then
19: P̂(Π(s′)|s̄,a) := #(Π(s′)|s̄,a)/#(s̄,a)
20: else
21: P̂(Π(s′)|s̄,a) := 0
22: end if
23: end for
24: until α(s,a)≥ m ∀s ∈ S,a ∈ A

as a weighting function, selecting the right one is essential for
balancing between speed-up in sample collection and error in
estimated transition probabilities [3]. While weighted indirect
sampling significantly reduces the error in the initial time
steps when compared to direct sampling, the error converges
to a non-zero value in the long term. This issue can be
addressed by introducing a time-varying weighting function,
ωt(s,s′) = w(∆(s,s′), t) where ωt(s,s′)→ 0 as t → ∞. ωt ,
while performing better than direct sampling in short term,
will also have an error that eventually converges to zero.

So far, we focused on using local side information to
accelerate the collection of samples with little consideration
for the actual problem of finding the optimal control policy.
As discussed earlier, learning algorithms typically handle
exploration-exploitation trade-off by rewarding the agent
for visiting a previously unexplored or underexplored state.

However, in the case of agents with local side information,
not every state is the same in terms of the information gain
one could achieve by visiting it. For example, visiting a
state with a high degree of similarity with its neighboring
states will contribute more to the overall sample count than
visiting a state with the same count of current samples but
little or no similarity with its neighbors. This motivates the
notion of a benefit, defined as a measure of the estimated
total information gain by sampling at a state. Benefit, which
helps in deciding the action that adds the highest value to
the learning process, should encompass:

1) Quantification of similarity of a state to other states –
visiting a state with highly similar neighbors is bene-
ficial as it adds to the sample count of its neighbors.

2) Significant bonus for visiting a previously unexplored
state – visiting the state for the first time provides
information on its similarity to neighboring states.

3) Higher bonus for a state-action pair with low sample
count – low sample count translates to a high error in
estimated transition probabilities. Note that this is the
only component considered in [3].

With these requirements in mind, we propose the following
benefit function:

B(s,a) = µη(s)+ γ ∑
s̄

ω(s, s̄)
1+α(s̄,a)

, (1)

where η(s) : S → {0,1} is a function assuming value of 1
if the state s was not previously visited and 0 if the state
has already been visited, µ,γ ∈R≥0 are tunable parameters,
and s̄∈ S are states such that d(s, s̄)≤ λ . While η motivates
the agent to actively explore previously unvisited states, the
second component of (1) ensures that states with highly
similar and less explored neighbors are visited first. In every
element of the summation over states within observation
radius, the weight ω(s, s̄) in the numerator signifies similarity
of that state s̄ with state under consideration s, and the
sample count α(s̄,a) in the denominator prioritizes state-
action pairs with less number of samples. The addition of 1 in
the denominator is only to ensure that the benefit B(s,a) =∞

does not happen when α(s̄,a) = 0. Using the benefit value as
the exploration bonus, the optimal action at any state would
be the action that maximizes the value function

V̂ ∗H(s) = max
a

{
B(s,a)+R(s,a)+ ∑

s′∈S
P̂(s′|s,a)V̂ ∗H−1(s

′)

}
,

where V̂ ∗0 (s) = maxaB(s,a) and P̂ denotes the current esti-
mate of the state transition probabilities. While we omitted
its timestamp to simplify notation, note that, unlike the
reward function, the benefit function B(s,a) is time-varying.
Hence, finding values of benefit at future states, required
for calculating V̂ ∗H−1(s

′), is non-trivial. We could solve this
issue by either maintaining expectation of future benefits at
all states or by acting as if it will be time-invariant in the
future, as done in [3]. In the next section, we define safety
in the context of our problem and provide safety guarantees
for an agent operating in an environment with access to side
information.

IV. SAFETY GUARANTEES WITH SIDE INFORMATION

In this section, we formalize the notion of safety and
provide guarantees on the safety of an agent operating with
the proposed learning algorithm. In a given state space S,
we define unsafe states as a subset of states D ⊂ S that
are undesirable and are a priori known to the agent. We also
assume that if an agent enters an unsafe state at time t, further
exploration is not possible. We consider a policy to be safe
if an agent following the policy always takes actions that are
least likely to result in it moving to an unsafe state.

Definition 3. Policy π is safe if, for any safe state st ∈ Dc,
P(st+1 ∈ D|st ,π(st)) = minat∈A P(st+1 ∈ D|st ,at).

Given a reward function that assigns an appropriately low
reward for all unsafe states, an agent acting optimally with
perfect knowledge of the environment will enter an unsafe
state at time t with probability mina∈A ∑s′∈DP(s′|st ,a). For
an agent exploring the environment, a safe policy only
guarantees safety inasmuch the optimal policy guarantees
safety. Therefore, for establishing the sufficient conditions
for safety, a policy is safe if its outcomes at every time step
are the same as the outcomes of the optimal policy. In terms
of action-values, the sufficient conditions can be given as

argmax
a

Q̂∗H(s,a) = argmax
a

Q∗H(s,a), (2)

where Q̂∗H(s,a) is the optimal action-value given current es-
timates of state transition probabilities and Q∗H(s,a) denotes
the optimal action-value given true state transition probabil-
ities. The outcome of a policy that maximizes Q̂∗H(s,a) at a
state s will be the same as the outcome of the optimal policy
argmaxa Q∗H(s,a) only if the error in the optimal action-
values |maxa∈A Q̂∗H(s,a)−maxa∈A Q∗H(s,a)| is less than the
minimum difference between the true action-values at the
state minai,a j∈A |Q∗H(s,ai)−Q∗H(s,a j)|. We assume that the
agent is myopic to obtain tractable error formulations.

Assumption 1. The agent is myopic, i.e., the horizon of the
agent H equals zero.

We note that the results in Section V prove that the guaran-
tees that we obtain under this assumption are conservative;
the agent behaves safely even for a non-zero horizon. For
convenience, we use Q̂∗(s,a) to denote Q̂∗0(s,a), Q∗(s,a)
to denote Q∗0(s,a), and π̂∗ to denote the optimal policy
given current estimates. Also, we quantify the error in state
transition probabilities using ε , the maximum error for any
action at a state, ε = maxa∈A‖P̂(s′|s,a)−P(s′|s,a)‖1. Then,
for a given minimum difference between true action-values
at a state QD, we claim that an agent takes a safe action
if the maximum error in transition probabilities at that state
satisfies the relationship ε <QD/R̄, where R̄ is the maximum
possible reward at any state.

Theorem 1. If ε < QD/R̄, then under Assumption
1, at any state st in Dc, P(st+1 ∈ D|st , π̂

∗(st)) =
minat∈A P(st+1 ∈ D|st ,at).

Proof: At any time step t, define

G(st+1|st ,at) = P̂(st+1|st ,at)−P(st+1|st ,at), (3)

where P̂ is the current estimate of state transition probabil-
ities. Given maximum error in transition probability for any
action at that state is less than ε ,

∑
s′∈S
|G(s′|st ,a)| ≤ ε ∀a ∈ A. (4)

The error in the action-value at any state-action pair is
Q̂∗(st ,at)−Q∗(st ,at). Using (3) and the assumption that
horizon H = 0, we could express the error in value as

Q̂∗(st ,at)−Q∗(st ,at)

= ∑
s′∈S

G(s′|st ,at)R(s′|st ,at).
(5)

We know that the reward function is defined such that it
satisfies 0≤R≤ R̄. Using this and (4) we have

∑
s′∈S

G(s′|st ,at)R(s′|st ,at)

≤ ∑
s′∈S
|G(s′|st ,at)|R(s′|st ,at)≤ εR̄.

(6)

Substituting (5) in (6),

Q̂∗(st ,at)−Q∗(st ,at)≤ εR̄. (7)

Further, we have

|V̂ ∗(st)−V ∗(st)| ≤ ‖Q̂∗(st ,at)−Q∗(st ,at)‖∞, (8)

where V̂ ∗(st) = maxa∈A Q̂∗(st ,a) and V ∗(st) =
maxa∈A Q∗(st ,a). From (7) and (8) it follows that

|V̂ ∗(st)−V ∗(st)| ≤ εR̄. (9)

We know that sufficient condition for an action to be safe is

|V̂ ∗(st)−V ∗(st)|< QD, (10)

Therefore, from (9) and (10) it follows that an action taken
by an agent at any state is safe if

ε <
QD

R̄
.

Theorem 1 establishes guarantees on the safety of an
agent for a given error in the transition probabilities at a
state. However, direct sampling algorithms cannot provide
an estimate of transition probability of a state-action pair
without first directly collecting samples at that state. On
the other hand, algorithms learning with indirect sampling
provide estimates of transition probabilities at states within
the agent’s observation radius without actually visiting them.
This feature motivates us to provide a guarantee on the safety
of a policy generated by the proposed algorithm.

Assumption 2. For a starting state s0 ∈ Dc, let T be the
minimum number of time steps required for the agent to
traverse, using any control policy, from s0 to any s ∈ D.

In order to make the technical work simpler, we consider
an environment where all the states have the same transition
probabilities, up to a permutation.

Assumption 3. Let ∆ :S×S→ [0,1] be the distance between
transition probabilities of states, as defined in Definition 1.
For any s, s̄ ∈ Dc, ∆(s, s̄) = 0.

The exploration bonus of the proposed algorithm, with
proper choice of tuning parameters, ensures that all the
actions are sampled roughly the same number of times.
Hence, for an agent learning with the proposed algorithm, the
number of samples collected after time T for any action is
no less than bT/|A|c. Under these assumptions, we provide
an exponential bound on the safety of an agent.

Theorem 2. Under Assumptions 1, 2, and 3, at any time step

t such that st ∈ Dc, P(st+1 ∈ D|st , π̂
∗(st))≤ e

− 2bT/|A|cQ2
D

|S|R̄2 .

Proof: For any t < T , the proof is trivial as the
probability of taking an unsafe action is zero. For the case
t ≥ T , the proof follows from Theorem 1 and Hoeffding’s
inequality [14]. Under Assumption 2, for any starting state
s0, the agent collects at least T samples before reaching
the neighborhood of an unsafe state. Under Assumption 3,
the transition probability of an action remains the same at
any state s∈Dc. Let Xi = (X i

1,X
i
2, ...,X

i
|S|) : 0≤ X i

j∈1,2,..|S| ≤
1; ∑

|S|
j=1 X i

j = 1 ∀i ∈ {1,2, ..., |A|} denote the random vector
corresponding to the probabilities of reaching different states
by taking an action i ∈ A. Let Yat represent the sample
collected at time step t by taking an action at ∈ A. From
Algorithm 1, the current estimate of state transition proba-
bilities by taking an action a∈A would be Xa =

(∑at :at=a Yat)

|{at :at=a}| .
Then for some δ ≥ 0,

P
(∥∥Xa−E[Xa]

∥∥
1 > δ

)
≤ P

 |S|⋃
i=1

∣∣Xa
i −E[Xi

a]
∣∣> δ

|S|

 ,

for some i ∈ {1,2, .., |S|}, as whenever ‖Xa−E[Xa]|1 > δ ,
|Xa

i −E[Xi
a]| ≥ δ

|S| for at least one i ∈ {1,2, ..., |S|}. Further

P

 |S|⋃
i=1

∣∣Xa
i −E[Xi

a]
∣∣> δ

|S|

≤ |S|

∑
i=1

P
(∣∣Xa

i −E[Xi
a]
∣∣> δ

|S|

)
.

Using Hoeffding’s inequality, which holds for all i ∈
{1,2, .., |S|},

P
(∥∥Xa−E[Xa]

∥∥
1 > δ

)
≤ |S|e−

2bT/|A|cδ2
|S| . (11)

Since (12) is valid for any a ∈ A, replacing ‖Xa−E[Xa]‖1
with ε = maxa∈A ‖Xa − E[Xa]‖1 and substituting δ with
QD/R̄≥ 0 in (11), we have

P
(

ε >
QD

R̄

)
≤ |S|e

− 2bT/|A|cQ2
D

|S|R̄2 .

From Theorem 1, the expression on the left is the probability
of taking an unsafe action. Therefore, the probability of
taking an unsafe action at any time step t ≥ T would be

P(st+1 ∈ D|st , π̂
∗(st)) = P

(
ε >

QD

R̄

)
≤ |S|e

− 2bT/|A|cQ2
D

|S|R̄2 .

V. NUMERICAL EXPERIMENTS

In this section, we demonstrate the performance of the
proposed exploration bonus with local side information while
also validating the obtained theoretical guarantees on safety.
In order to compare our results to [3], we consider the
problem of the Mars 2020 Rover mission operating in Jezero
crater [15], the same as the one presented therein. We
assume that the sensors onboard the rover provide us with
information on terrain features required for bounding the
transition probability differences between states [16], [15].
Each of the states in our MDP belong to one of the three
terrain types, benign, rough, and rippled, that differ in the
(i) the similarity between transition probabilities of states
within the same type, and (ii) the slip rate, defined as the
probability of the rover moving in an unintended direction.
For our simulations, we use the values of slip rate and
difference between transition probabilities of states from [3]
which are intended to be merely illustrative. The following
five movements constitute the set of possible actions: up,
down, left, right, and stay in the same position. Note that,
for a given action, the actual movement of the rover could
be different from the one intended due to slippage. Finally,
we set the observation radius of the rover λ to 2.

A. Learning

This subsection compares the performance of direct and
indirect weighted sampling algorithms for the sole objective
of learning the environment dynamics by using the maximum
learning error emax = maxs,a,s′ |P̂(s′|s,a)−P(s′|s,a)| as the
comparison metric. For the indirect sampling algorithm we
use the weighting function, w(∆) = (1−∆)n where n is a
tunable parameter, originally proposed in [3]. State-space
was explored using the following policy: at any state s,
choose an action a that is expected to result in a transition
to a state s′ that has been visited the least number of times.
We ran the simulation for 10 million time steps with n = 20
and present the maximal learning errors in Fig. 1.

As expected, the indirect weighed sampling algorithms
outperform direct sampling initially by converging very
quickly, with the learning error in the case of local indirect
sampling reaching a value of 0.09 within 7× 105 time
steps. However, we note that the error in indirect sampling
algorithms converges to a non-zero value, due to the build-up
of errors induced by reusing the samples. This is because the
overall indirect samples collected at states using local side
information are less than those collected by global indirect
sampling. We resolve the issue of convergence to non-zero
error by adding a time-varying component to the weighting
function. Specifically, after every N time steps, we decrease
the weights ω(s,s′),s 6= s′, by a factor of K. This feature
ensures that the samples collected in the long-term are more
direct in nature. For our simulation, we took N = 105 and
K = 10 and the time-varying weighting function behaves as
expected, with its maximum error smaller than that of direct
sampling in the initial time steps while converging to zero
in long-term as shown in Fig. 1.

0 2 4 6 8 10

time steps t 106

0

0.1

0.2

0.3

m
a
x
im

u
m

 e
rr

o
r

e
m

a
x

Fig. 1. The maximum learning errors for all the four versions of sampling:
the black graph corresponds to the error in the direct sampling, the blue and
green graphs represent the error in local indirect weighted sampling with
time-varying and time-invariant weighting functions respectively, and the
red graph corresponds to the error with global indirect sampling.

Fig. 2. Safety of the agent using BEB with direct sampling (left) and the
proposed algorithm (right). Red and green circles denote initial and goal
states, respectively. The orange circle shows agent reaching an unsafe state.

B. Control and Safety

We now compare BEB and the proposed algorithm in
terms of safety and optimal control. We consider the optimal
control problem of reaching a goal state s∗ in the minimum
amount of time and additionally assume that the rough terrain
is not safe. The agent starts at a corner of the state space
and is required to reach the goal state in the immediate
neighborhood of rough terrain as shown in Fig. 2. We assign
a reward of (‖s∗− s‖)−1 for all states s ∈ S\{s∗}, a reward
of 10 for the goal state s∗ to ensure that the agent eventually
reaches it, and a reward of 0 to all unsafe states to ensure
that the agent avoids them. Policies were generated with the
standard BEB algorithm and the proposed algorithm using
the following values for the parameters – horizon length
H = 2, β = 2H2, γ = 2H2, and µ = 2H. These parameters,
particularly the values of β and γ , are based on the values
considered in [8]. From Fig. 2 we observe that the policy
generated by the proposed algorithm leads the agent to
safely reach the goal state located right next to unsafe states
whereas the policy generated by BEB leads the agent to enter
an unsafe state before reaching its goal state. We note that
the simulation parameters were well outside the assumptions
made for providing theoretical guarantees in the previous
section. Hence, the safety guarantees obtained in Section
IV are conservative; an agent using the proposed algorithm
explores safely even for a non-zero horizon.

VI. CONCLUSIONS

We presented a framework that allows an agent to exploit
local side information on similarities between the transition

probabilities at different states in an MDP to accelerate
learning by prioritizing states that are more valuable in terms
of the total side information gain. Further, we provided
guarantees on the safety of an agent using the proposed al-
gorithm and validated all the proposed ideas using numerical
experiments.

While this work develops the idea of indirect sampling
by creating a more realistic framework, still much remains
to be done in terms of providing theoretical guarantees
on the learning speed and the error in the model learned
using the proposed exploration bonus. Also, determining the
exact relationship between tuning parameters in the benefit
function and the control objective for a given environment
is essential and was not addressed in our work. In addition
to these open questions, extending the guarantees on safety
to far more general scenarios would be a natural next step.

REFERENCES

[1] P. Arena, P. Di Giamberardino, L. Fortuna, F. La Gala, S. Monaco,
G. Muscato, A. Rizzo, and R. Ronchini, “Toward a mobile autonomous
robotic system for Mars exploration,” Planetary and Space Science,
vol. 52, no. 1-3, pp. 23–30, 2004.

[2] K. Yang, S. K. Gan, and S. Sukkarieh, “An efficient path planning and
control algorithm for RUAVs in unknown and cluttered environments,”
in 2nd International Symposium on UAVs, 2009, pp. 101–122.

[3] M. Ornik, J. Fu, N. T. Lauffer, W. K. Perera, M. Alshiekh, M. Ono,
and U. Topcu, “Expedited learning in MDPs with side information,”
in 57th IEEE Conference on Decision and Control. IEEE, 2018, pp.
1941–1948.

[4] S. Koenig, “Exploring unknown environments with real-time search
or reinforcement learning,” in Advances in Neural Information Pro-
cessing Systems, 1999, pp. 1003–1009.

[5] H. Gao, X. Song, L. Ding, K. Xia, N. Li, and Z. Deng, “Adaptive
motion control of wheeled mobile robot with unknown slippage,”
International Journal of Control, vol. 87, no. 8, pp. 1513–1522, 2014.

[6] A. L. Strehl, L. Li, and M. L. Littman, “Reinforcement learning in
finite MDPs: PAC analysis,” Journal of Machine Learning Research,
vol. 10, pp. 2413–2444, 2009.

[7] M. Kearns and S. Singh, “Near-optimal reinforcement learning in
polynomial time,” Machine Learning, vol. 49, no. 2-3, pp. 209–232,
2002.

[8] J. Z. Kolter and A. Y. Ng, “Near-Bayesian exploration in polynomial
time,” in 26th Annual International Conference on Machine Learning.
ACM, 2009, pp. 513–520.

[9] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, “Safe
model-based reinforcement learning with stability guarantees,” in
Advances in Neural Information Processing Systems, 2017, pp. 908–
918.

[10] T. M. Moldovan and P. Abbeel, “Safe exploration in Markov decision
processes,” in 29th International Conference on Machine Learning,
2012, pp. 1451–1458.

[11] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[12] M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 2014.

[13] R. I. Brafman and M. Tennenholtz, “R-MAX–a general polynomial
time algorithm for near-optimal reinforcement learning,” Journal of
Machine Learning Research, vol. 3, pp. 213–231, 2002.

[14] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol. 58,
no. 301, pp. 13–30, 1963.

[15] M. Ono, M. Heverly, B. Rothrock, E. Almeida, F. Calef, T. Soliman,
N. Williams, H. Gengl, T. Ishimatsu, A. Nicholas, E. Stilley, K. Otsu,
R. Lange, and S. M. Milkovich, “Mars 2020 site-specific mission per-
formance analysis: Part 2. Surface traversability,” 2018 AIAA SPACE
and Astronautics Forum and Exposition, pp. 1–14, 2018.

[16] D. Helmick, A. Angelova, and L. Matthies, “Terrain adaptive naviga-
tion for planetary rovers,” Journal of Field Robotics, vol. 26, no. 4,
pp. 391–410, 2009.

