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Extraterrestrial autonomous lander missions increasingly demand adaptive capabilities to
handle the unpredictable and diverse nature of the terrain. This paper discusses the deployment
of a Deep Meta-Learning with Controlled Deployment Gaps (CoDeGa) trained model for
terrain scooping tasks in Ocean Worlds Lander Autonomy Testbed (OWLAT) at NASA Jet
Propulsion Laboratory. The CoDeGa-powered scooping strategy is designed to adapt to novel
terrains, selecting scooping actions based on the available RGB-D image data and limited
experience. The paper presents our experiences with transferring the scooping framework
with CoDeGa-trained model from a low-fidelity testbed to the high-fidelity OWLAT testbed.
Additionally, it validates the method’s performance in novel, realistic environments, and shares
the lessons learned from deploying learning-based autonomy algorithms for space exploration.
Experimental results from OWLAT substantiate the efficacy of CoDeGa in rapidly adapting to
unfamiliar terrains and effectively making autonomous decisions under considerable domain
shifts, thereby endorsing its potential utility in future extraterrestrial missions.

I. Introduction
The exploration of ocean worlds stands as a pivotal element in humanity’s exploration of our solar system,

encompassing critical research objectives including the quest for potential signs of life and the comprehensive
understanding of conditions fostering habitability [1], [2], [3]. Robotic exploration missions are essential for the
exploration of potentially habitable ocean worlds. Past lander and rover missions including the Mars exploration program
[4] and the Perseverance rover mission [5] are human-in-the-loop systems with expert teams on Earth supervising the
terrain sampling process and controlling them based on the collected data. However, unlike Mars missions, many of the
ocean world missions, including the Europa Lander mission concept [6], are anticipated to have short durations, on the
order of tens of days, due to the intensity of the radiation environment, adverse thermal conditions, low availability
of solar energy, and using battery as the sole power source. The limited mission duration combined with the long
communication delays between Earth and the ocean worlds necessitates a high degree of autonomy for the lander’s
success [7].

The Europa lander’s primary objectives include collecting terrain samples for in situ analysis of surface and
sub-surface materials. Autonomy in terrain sampling missions is challenging due to the high degree of uncertainty in the
surface topology at the landing site, terrain material properties, composition, and appearance. Constraints on the number
of samples that can be analyzed in-situ, coupled with the risk of system failures, further limits the extent of exploration
[8]. Any realistic sampling strategy needs to be able to make decisions under uncertainty and rapidly adapt to the
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environment in order to maximize the scientific return from the mission. To address these challenges, recent efforts
have focused on the development of capabilities for autonomous excavation site selection [9], [10], autonomy software
prototype to execute complex and highly constrained missions with limited human intervention [11], and field testing
the functional autonomy stack in terrestrial analog environments [12]. Specifically, our prior work [10] proposed Deep
Meta-Learning with Controlled Deployment Gaps (CoDeGa), an adaptive scooping strategy that uses deep Gaussian
processes trained with a novel meta-learning approach. CoDeGa learns online from very limited experience on target
terrains despite large domain shifts from the training set. These prior experiments were conducted on a low-fidelity
testbed at the University of Illinois Urbana-Champaign (UIUC) designed to rapidly collect large-scale data for training
and testing the models on a wide range of terrains.

Building upon this foundational work, the next crucial step is to validate and refine our strategy within a more
sophisticated and representative environment. The Ocean Worlds Lander Autonomy Testbed (OWLAT) [13] at NASA
Jet Propulsion Laboratory (JPL) provides such an environment. OWLAT is a high-fidelity testbed developed to validate
autonomy algorithms for future ocean world missions. It serves as a state-of-the-art platform for simulating various
potential future planetary missions over a wide range of dynamic environments, including surface operations on small
bodies where recreating the dynamics in low gravity is critical. By integrating CoDeGa with OWLAT, we aim to assess
the robustness of the proposed autonomy algorithms in conditions that closely mimic those of actual extraterrestrial
landscapes, thereby bridging the gap between preliminary tests and real-world deployment.

In this paper, we report our experiences deploying the CoDeGa-trained adaptive scooping model on the OWLAT
testbed. Our contribution is threefold: (1) we assess the feasibility of transferring the model across systems with
similar sensor suites, end-effectors, and primitive actions, (2) we validate the model’s adaptability in novel, realistic
environments and (3) we share the lessons learned from designing and deploying learning-based autonomy algorithms
in the context of space exploration. Experimental results provide strong evidence that CoDeGa-trained model adapts
to the significant domain shifts presented by the OWLAT testbed, reinforcing its applicability and promising role in
autonomous terrain sampling for future off-world missions.

II. Preliminaries and Background
This section describes the scooping problem setting in detail and provides a brief overview of the solution approach

using the CoDeGa-trained model as proposed in [10]. We also highlight the differences between the UIUC testbed and
OWLAT and the importance of deploying and validating the solution approach on the OWLAT testbed.

A. Scooping Problem
We study the problem of scooping in which the goal is to collect high-volume samples from the lander’s workspace

with a limited budget of attempts. The problem is formulated as a sequential decision-making problem where the robot
observes the terrain RGB-D image 𝑜 ∈ O, uses a scooping policy to apply action 𝑎 ∈ A(𝑜) where A(𝑜) is a discrete set
of parameterized scooping motions dependent on the RGB-D image, and receives reward 𝑟 ∈ R, which is the scooped
volume.

Given a target terrain 𝑇∗, the robot’s goal is to find a series of scooping motions that maximize the total reward from
scoops across the first 𝑘 attempts. During the 𝑛-th attempt, for 𝑛 ≤ 𝑘 , the robot has access to the history of scoops on
this terrain 𝐻 = {(𝑜 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 ) | 𝑗 = 1, . . . , 𝑛 − 1}. The robot also has access to prior scooping experience, which consists
of a set of 𝑀 terrains {𝑇1, . . . , 𝑇𝑀 }, and a training dataset 𝐷𝑖 = {(𝑜 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 ) | 𝑗 = 1, . . . , 𝑁𝑖} of past scoops and their
rewards for each terrain 𝑖 = 1, ..., 𝑀 .

We suppose that a latent variable 𝛼 characterizes a given terrain’s indirectly observed properties including
composition, material properties, and topography. Let 𝛼∗ characterize terrain 𝑇∗ and 𝛼𝑖 characterize terrain 𝑇𝑖 for
𝑖 = 1, . . . , 𝑀 . The observation depends on 𝛼 and action rewards are unknown functions of both action and 𝛼. Standard
supervised learning for modeling 𝑟 ≈ 𝑓 (𝑜, 𝑎) is effective when 𝛼 aligns with training terrains and is deducible from
observation 𝑜, or if rewards are not heavily tied to unobserved latent characteristics. Performance drops when 𝑇∗ is
outside the training distribution or when observation 𝑜 inadequately indicates the terrain’s latent aspects affecting
rewards.

We propose an adaptive online learning strategy for better sampling performance on a terrain 𝑇∗ despite significant
differences from training terrains. This method utilizes real-time data from 𝐻, adapting to terrain 𝑇∗ and countering
domain shifts from the training set.

2



B. Adaptive Scooping using CoDeGa-trained Model
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Fig. 1 Overview of the CoDeGa-trained model with deep mean, deep kernel, and feature encoder modules.

The solution approach proposed in [10], Deep Meta-Learning with Controlled Deployment Gaps (CoDeGa),
leverages a deep Gaussian process (GP) model to capture the relationship between the observation-action pair (𝑜, 𝑎)
and the reward 𝑟 . The deep Gaussian process model employs deep mean functions and deep kernels where the input to
the GP kernel is transformed by a neural network. We note that, in addition to the observation-action pair, the model is
also conditioned on the online support set that contains the history of previous scoops and their outcomes on the same
terrain. In the context of a scooping task, this model predicts the scooped volume given an input consisting of a local
patch of an RGB-D image and action parameters, as illustrated in Fig. 1.

In the CoDeGa training procedure, the training terrains are split into mean and kernel training sets containing
different materials. Doing so encourages the kernel to encounter residuals representative of those in out-of-distribution
tasks. The deep mean is first trained on the mean training set to minimize error, and the GP kernel is then trained on
the residuals of the deep mean model applied to the kernel training set. This process is repeated, similar to 𝑘-fold
cross-validation, with a common kernel trained over aggregated losses across folds. The strength of CoDeGa lies in its
ability to generate a model that performs well under deployment gaps, which are common in real-world applications.

Given a model to robustly predict the scooped volume, [10] employs a Bayesian optimization approach for selecting
the scooping action. Rather than simply using the mean prediction of the model, it utilizes an acquisition function that
also takes uncertainty into account. This function serves as a scoring system that guides the selection of actions and
encourages the exploration of actions with uncertain outcomes, allowing for a more robust performance under varying
conditions.

The CoDeGa-based scooping strategy, while effective, requires a large amount of data across different terrains for
training the deep mean and kernel. In the next section, we describe the UIUC testbed designed to collect such data with
minimal human supervision and the different terrains and compositions on which the data is collected.

C. UIUC Testbed
The data collection testbed at the University of Illinois Urbana-Champaign (UIUC) is designed for large-scale

data collection and testing of learning-based approaches for scooping tasks. The setup includes a UR5e arm with a
scoop mounted on the end-effector, an overhead Intel RealSense L515 RGB-D camera, and a wheeled simulant bin
that is approximately 0.9 m x 0.7 m x 0.2 m. A scoop action in this setup is a parameterized trajectory for the scoop
end-effector tracked by an impedance controller. Fig. 2 shows an illustration of the testbed.

A terrain is defined as a unique composition of one or more materials. The setup uses multiple wheeled simulant
bins to parallelly collect data in one bin and set up a new terrain in another that can be quickly swapped. For each new
terrain, data is collected by executing different scooping actions and measuring the volume of scooped material. A
detailed description of the different materials considered and the scoop action parameters is provided in [10].

The UIUC testbed enables rapid data collection at the cost of limited representation of the ocean world lander system
complexity. In the next section, we describe the OWLAT testbed designed for validating autonomy algorithms for ocean
worlds missions.

D. Ocean Worlds Lander Autonomy Testbed
The Ocean Worlds Lander Autonomy Testbed (OWLAT) [13] is a testbed developed at NASA Jet Propulsion

Laboratory (JPL) to test and validate the performance of various autonomy algorithms and architectures for future
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Fig. 2 Comparison of the UIUC testbed (left) and the Ocean Worlds Lander Autonomy Testbed (OWLAT)
(right).

missions to ocean worlds. As shown in Fig. 2, the testbed hardware consists of a 7-DOF Barrett WAM7 robotic arm
with a host of interchangeable end-effector tools representing the manipulator, an intel Realsense D415 mounted on a
pan-tilt mount for 3D perception, and force-torque sensors located at the interface between the arm and the platform and
also at the end of the arm’s wrist. The testbed also has a 6-DOF Stewart platform that is used to simulate the lander and
a simulant area that hosts the testbed’s terrains with different simulants and surface features.

OWLAT hardware is complemented by a software interface to command the manipulator and the camera along
with its pan-tilt mount for carrying out surface operations and collecting data. The force-torque sensors located at the
end of the wrist and at the interface between the arm and the Stewart platform play a critical role in replicating the
dynamical environment such landers are likely to experience on the low-gravity icy moons of Jupiter and Saturn. As the
tool interacts with the simulant in the testbed, the reaction forces measured are fed into a dynamics model of the system.
The computed motion is imposed on the Stewart platform in real-time. The use of high bandwidth Ethercat force-torque
sensors allows OWLAT to close the control-sensing loop at 500 Hz and study test cases demonstrating how interaction
with the surface on objects with gravity as low as Enceladus (𝑔 = 0.13 m/s2) can cause the legs of the lander to lift off
the ground, thereby achieving Earth gravity compensation without the use of suspension cables and gantry mechanisms.

In the next section, we describe the process of deploying the CoDeGa-trained model on the OWLAT testbed,
highlighting the challenges of interfacing a learned model with new hardware configurations vastly different from the
training setting.

III. Deployment
This section details the process of deploying the CoDeGa-trained model on OWLAT testbed for selecting scooping

actions based on RGB-D information of the robot’s workspace and past experience in the deployed environment.
Deploying the adaptive scooping strategy with the CoDeGa-trained model involves taking a sequence of scooping

actions where the scoop volume estimation model adapts based on the reward from the previously executed actions. A
single scooping attempt involves the following steps:

1) collect the RGB-D data capturing the current state of the simulant bin,
2) pass the data and the set of all candidate scoop actions to the client,
3) evaluate the candidate actions using the model, taking into account the history of previous actions and their

outcomes,
4) measure the scooped volume, and
5) record the outcome along with the executed action and corresponding observation in the online support set.
Fig. 3 shows an overview of the deployment process with the OWLAT testbed. OWLAT provides a ROS interface

with access to the RGB-D camera data and ROS actions over the ROS middleware. We implemented ROS actions that
allow us to execute scoop actions parameterized similar to the UIUC testbed. The RGB-D data captured by the camera
is passed to the client over the ROS middleware. The deployment client preprocesses the RGB-D data and passes it
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Fig. 3 Remote deployment of the adaptive scooping strategy using UIUC-trained model on OWLAT.

to the CoDeGa-trained model along with the candidate actions. The decision maker then decides the next action to
execute based on the model’s evaluations and sends the action to the testbed over the ROS middleware. The testbed
executes the action on the robot and measures the scooped volume. Given that the testing on OWLAT involves far fewer
overall scooping attempts when compared to the data collection process in the UIUC testbed, we manually measure the
scooped volume. We note that a deployment-ready ocean world mission is expected to include the instrumentation to
analyze the scientific value of the scooped material, thereby addressing the issue of scooped volume measurement.

We now discuss in detail the steps involved in processing RGB-D data to be compatible with the CoDeGa-trained
model and generating the candidate action set that can be easily implemented on any robotic system with a scoop
end-effector.

A. Processing RGB-D Data
The CoDeGa-trained model utilizes a convolutional neural network-based feature encoder to extract relevant

information from the RGB-D data. While effective, these encoders are susceptible to variations in input data, requiring
a degree of consistency in feature scale and camera orientation relative to the training set for optimal performance. The
UIUC testbed standardizes data capture across materials with varying feature scales by using a static overhead RGB-D
camera, thereby streamlining data collection and preprocessing by minimizing environmental inconsistencies.

In contrast, real-world systems rarely offer such controlled conditions. For example, in the OWLAT testbed, the
placement of the RGB-D camera is akin to the camera placement in real-world landers. It is mounted on a pan-tilt unit
at the base of the robot, capturing data from this unique perspective, as shown in Fig. 2. Additionally, real-world data is
often further complicated by variations in camera resolution and quality across systems, and it commonly includes
noise, occlusions, and other artifacts.

To align the OWLAT data with the training conditions of the CoDeGa-trained model, we developed a preprocessing
pipeline as shown in Fig. 4. This pipeline includes (i) reprojecting the point cloud to a top-down view to emulate the
UIUC testbed perspective, (ii) reconstructing missing values to fill in gaps in the RGB and depth data while accounting
for occluded and out-of-range regions, and (iii) using system state and constraints to filter out anomalies. The resulting
images are then used to produce localized image patches based on the action parameters.
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Fig. 4 Overview of the steps involved in processing the RGB-D data captured by the OWLAT testbed.

In the next section, we discuss how our choice of parameterized motion primitives as actions enables us to easily
deploy the CoDeGa-trained model on any robotic system with a scoop end-effector. Additionally, we detail our approach
of generating valid candidate actions while accounting for system constraints.

B. Generating Action Candidates
In our implementation, the scoop action is a motion primitive characterized by an initial 𝑥, 𝑦 position, the yaw angle

𝜃 of the scoop, the scooping depth 𝑑, and the impedance controller stiffness parameter 𝑏 that takes a value out of the set
{low, high}. The z-coordinate is deduced from the depth map at the outset of the action. This action primitive follows the
parameterized trajectory described in [10], which is executed via an impedance controller. By defining the action in the
end effector space, we maintain a consistent action interpretation across varied systems. We adopt the same trajectory
for the scoop action primitive as established in [10] for deployment. Moreover, empirical evidence from [10] indicates
that higher stiffness values for the impedance controller yield superior performance on diverse terrains; consequently,
we fix the stiffness parameter 𝑏 to high value within the OWLAT action primitive to leverage these observed benefits.

Fig. 5 Illustration of the candidate action set generation process using OWLAT testbed data.

To synthesize the set of candidate actions, we use the processed depth data and system constraints to delineate
regions in the simulant bin amenable to scooping. Within these identified regions, we establish a uniform grid to
represent potential action locations. At each grid point, we evaluate eight possible yaw angles—excluding any that are
deemed infeasible—coupled with four distinct scooping depths (𝑑 values of 0.2 cm, 0.4 cm, 0.6 cm, and 0.8 cm) and a
single ’high’ stiffness value (𝑏). We note that the size of the resultant action set is dynamic, as it adjusts with the changes
in the environment. For each candidate action, we generate corresponding RGB and depth image patches centered at the
action 𝑥, 𝑦 and aligned with the scoop orientation 𝜃, as illustrated in Fig. 5. The image patches along with the stiffness
parameter and the selected depth value are then used to evaluate the action candidate, as illustrated in Fig. 1.

The next section describes the experiments conducted on the OWLAT testbed to evaluate the performance of the
CoDeGa-trained model.

IV. Experimental Evaluation and Discussion
We performed the experiments using an active remote connection with the OWLAT testbed operating at the Jet

Propulsion Laboratory (JPL), Pasadena, California, and the CoDeGa-trained model deployed for inference at the
University of Illinois Urbana-Champaign (UIUC), Champaign, Illinois. Table 1 lists all the materials used for training
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the model along with their corresponding physical properties. For evaluation, we used a terrain designed by subject
matter experts using out-of-distribution materials, Comet and Regolith. Comet is an unscoopable composition of
grey comet simulant material [14] surrounded by 3D printed PLA features with rugged terrain features from a 3D scan
of Devil’s Golf Course in Death Valley National Park, painted to match the Regolith’s color. Regolith is a fine
sand-like material that is visually distinct from the sand used in training. The two materials were composed together to
create a hypothetical representation of the ocean world terrain, as depicted in Fig. 6.

Fig. 6 (left) The terrain composition used for testing in OWLAT testbed. (right) The terrain composition with
labels for the Regolith (green) and Comet (red) materials.

Table 1 Materials used in the experiments along with their corresponding grain sizes, categorized by training
and testing sets, with U.S. quarter coin for scale.

Training Testing
Sand

fine play sand, << 1 mm
Pebbles

rocks, 0.8 – 1.0 cm
Slate

flat rocks, 2.0–4.0 cm
Gravel

rocks, 1.5–3.0 cm
Comet

unscoopable

Paper Balls
crumpled paper, 4.0 – 6.0 cm

Corn
dry corn kernels, 0.3–0.7 cm

Shredded Cardboard
cardboard, 1.0 – 8.0 cm

Mulch
red wood landscape mulch

Regolith
fine sand, 0.1 mm – 0.5 mm

Following the experimental procedure in [10], we compared the proposed method to the non-adaptive baseline
(Non-Adaptive), i.e., only the deep mean component of the CoDeGa-trained model, which is a neural network that
predicts the mean value of the estimated scoop volume, and a volume maximizing (Vol-Max) policy, where the action is
chosen to maximize the intersection between the scoop’s swept volume and the terrain following a strategy proposed in
the excavation literature [15].

We conducted three iterations of the experiment using each method across three different scenarios, each featuring
varying terrain topologies. Scenarios 1 and 2 consist of flat Regolith regions and higher unscoopable Comet areas,
with minor terrain features in the Regolith region that occur naturally during resets. In Scenario 3, the scoopable
Regolith region is designed with terrain features that have heights comparable to those of the unscoopable Comet
regions. The depth map in Fig. 7 illustrates the terrain topology for Scenario 3, where the three circular green areas
represent mounds created in the Regolith material.

The objective is to maximize the total volume of material scooped in 𝑘 = 5 attempts. Given that only one of the
two materials in the testing terrain is scoopable, we measured mass in each attempt rather than volume to enhance
measurement accuracy and ease. We used the average scooped mass over a run as the metric for comparing the efficacy
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Table 2 Results comparing CoDeGa with two baselines in OWLAT testbed. Higher scooped mass is better.

Vol-Max (gram) Non-Adaptive (gram) CoDeGa (gram)

Scenario 1 0.0 3.5 52.2
Scenario 2 0.0 18.8 64.2
Scenario 3 5.6 43.6 75.4

Average 1.9 22.0 63.9

of different methods. For all three scooping approaches, if the robot trajectory planning for a selected action during an
attempt fails, the subsequent highest scoring action is selected until planning succeeds. We used the candidate action set
outlined in Section III.B.
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Fig. 7 Example scooping attempts on the OWLAT testbed using three different methods. The cyan-to-yellow
colors represent regions with higher terrain elevations.

The average scooped mass for all methods across the three different scenarios is reported in Table 2. The proposed
approach that utilized CoDeGa-trained model significantly outperformed the baseline methods in all scenarios. Fig. 7
depicts the scooping actions executed during a representative trial for each method. The Vol-Max method consistently
selected scoop locations near the Comet regions due to its inherent preference for areas with steep terrain gradients.
While the Non-Adaptive baseline initially targeted the Regolith mounds, it failed to modify its policy in response to
the data observed online, eventually resorting to ineffective scooping attempts in the Comet region, akin to Vol-Max.
On the other hand, our approach initially engaged the Comet region but rapidly adapted its strategy in response to the
low mass of scooped material, shifting focus to the Regolith mounds and thereby maximizing the total scooped mass.

V. Conclusion
This paper presents the deployment of a CoDeGa-trained adaptive scooping model on the high-fidelity OWLAT

testbed. We evaluated the model, originally developed on a low-fidelity UIUC testbed, on novel terrains in OWLAT
testbed with out-of-distribution materials. Experimental results demonstrate the model’s capability to rapidly adapt to
unfamiliar environments and make effective decisions despite significant domain shifts. Specifically, the model achieved
several times higher average scooped mass compared to non-adaptive baselines across varying terrain topologies by
adapting its strategy online based on limited experience.

The successful deployment substantiates the potential utility of learning-based autonomy for maximizing scientific
return under uncertainty in ocean world missions. Moreover, it provides insights into real-world integration challenges,
including data preprocessing and motion planning. Overall, this work endorses the feasibility of transferring learning-
based systems from idealized training settings to realistic deployment environments.
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