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This paper introduces a novel approach to verification of neural network controlled systems,
combining the capabilities of the nnenum framework with the Verse toolkit. Addressing a critical
gap in the traditional verification process which often does not include the system dynamics
analysis while computing the neural network outputs, our integrated methodology enhances the
precision and safety of decision-making in complex dynamical systems. By iteratively verifying
neural network decisions and propagating system states, we maintain an accurate representation
of the system’s behavior over time, a vital aspect in ensuring operational safety.

Our approach is exemplified through the verification of the neural network controlled
Airborne Collision Avoidance System for Unmanned Aircraft (ACAS Xu). We demonstrate that
the integration of nnenum and Verse not only accurately computes reachable sets for the UAS
but also effectively handles the inherent complexity and nonlinearity of the system. The resulting
analysis provides a nuanced understanding of the system’s behavior under varying operational
conditions and interactions with other agents, such as intruder aircraft. The comprehensive
simulations conducted as part of this study reveal the robustness of our approach, validating
its effectiveness in verifying the safety and reliability of learned controllers. Furthermore, the
scalability and adaptability of our methodology suggest its broader applicability in various
autonomous systems requiring rigorous safety verification.

I. Nomenclature

𝑊𝑖 = weight matrix for layer 𝑖 of neural network
𝑏𝑖 = bias vector for layer 𝑖 of neural network
𝑠𝑘 = state vector at time instant 𝑘
𝑆0 = set of initial states
(𝑥𝑘 , 𝑦𝑘) = position coordinates of UAS in x-y plane at time instant 𝑘
𝜃𝑘 = heading of the UAS with respect to x-axis at time instant 𝑘
𝜌 = distance between ego aircraft and intruder aircraft
𝜙 = angle to intruder with respect to ego heading
𝜓 = heading of the intruder with respect to ego
𝑍 = ego’s sensor that gives the position of the intruder
𝐷 = set of decisions generated by ACAS Xu
𝐷𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑑 = subset of decisions after formal verification of 𝐷 using nnenum
𝑆𝑡 = one-step reachable set of states

∗Department of Aerospace Engineering and the Coordinated Science Laboratory, University of Illinois Urbana-Champaign, Urbana, USA. Email:
gokulp2@illinois.edu

†Department of Aerospace Engineering and the Coordinated Science Laboratory, University of Illinois Urbana-Champaign, Urbana, USA. Email:
mkvora2@illinois.edu

‡Department of Aerospace Engineering and the Coordinated Science Laboratory, University of Illinois Urbana-Champaign, Urbana, USA. Email:
tahaas2@illinois.edu

§Department of Electrical and Computer Engineering and the Coordinated Science Laboratory, University of Illinois Urbana-Champaign, Urbana,
USA. Email: li213@illinois.edu

¶Department of Aerospace Engineering and the Coordinated Science Laboratory, University of Illinois Urbana-Champaign, Urbana, USA. Email:
mornik@illinois.edu

‖Department of Electrical and Computer Engineering and the Coordinated Science Laboratory, University of Illinois Urbana-Champaign, Urbana,
USA. Email: mitras@illinois.edu

1



II. Introduction

As aerospace systems increasingly move towards automation, there arises the need for efficient approximations and
compact representations of complex control strategies. Such algorithms often involve the use of neural networks to

compress data, presenting a promising solution in environments with limited processing capabilities. One such method
is the Airborne Collision Avoidance System (ACAS) Xu [1]. However, ensuring the safety and reliability of these
approximations remains a pressing challenge, especially in the context of implementing these methods in safety-critical
systems like aircraft. Current verification methods [2–5] face significant limitations in handling the complexity and
nonlinearity of these systems, necessitating novel approaches to guarantee their safety and reliability.

Given this context, our work puts forward an innovative approach for verification of Neural Network Controlled
Systems (NNCS), utilizing Verse, a versatile library for scenario creation, simulation, and verification [6], in conjunction
with nnenum, a specialized neural network verification tool [7, 8]. Our methodology capitalizes on nnenum’s adeptness
at handling various activation functions and its efficient use of abstraction refinement techniques. This enables the
precise verification of decisions emanating from the ACAS Xu neural networks, thereby giving a subset of feasible
decisions at each time step. We supplement this capability with Verse’s robust hybrid system verification techniques
which are capable of handling multiple agents and uncertain dynamics. The reachability analysis of Verse, facilitated by
the DryVR [9] engine, allows for efficient exploration of all possible system states, enabling a meticulous evaluation of
system behavior and evolution over time thereby acting as a system verification tool.

Various methods of hybrid system verification have been implemented in the past for safety-critical control [10, 11].
Earlier methods focus on verification using CTL specification, bisimulation, and quotient transition systems for discrete
model approximations [12–14]. In more recent years, the verification of hybrid systems has shifted away from accurately
modeling the system behavior to using reachable sets [15–17] to calculate provably safe trajectories. Recent published
methods [18, 19] are effective verification tools using model checking for reachable set computation, but lack the
scalability and real-time computation potential of Verse using nnenum-based neural network verifiers.

We integrate Verse and nnenum based neural network verifiers with ACAS Xu system to generate safey assertions
for different scenarios by performing verification of the ACAS Xu NNCS while also considering the dynamics. This
study contributes to the growing discourse on the safety and reliability of neural networks in the aviation industry, laying
the groundwork for future research and development.

III. Technical Background
The foundational components of the proposed approach involves three main components: the ACAS Xu system, the

Verse library, and the nnenum-based neural network verifiers.

A. Airborne Collision Avoidance System (ACAS) Xu
The Airborne Collision Avoidance System X (ACAS X) [20, 21] is a family of mid-air collision avoidance systems,

with ACAS Xu being an extended variant designed specifically for unmanned operations. The decision-making logic of
ACAS Xu is grounded in a large lookup table, consisting of all possible state-action pairs, which is approximately of 2
gigabytes in size. It is developed using frameworks of dynamic programming and Markov decision processes. Table 1
lists the available advisories for ACAS Xu. These advisories are the possible actions that an aircraft can take while
being driven by the ACAS Xu NNCS. Previous work [22] has proposed a compressed neural network representation of
the lookup table in an effort to improve the storage efficiency and to enable computationally efficient decision-making.
Such a system makes use of neural networks to inform its decisions, a setup known as a neural network control system
(NNCS). Contrary to conventional machine learning systems, the ACAS Xu system operates and makes decisions based
on the aircraft dynamics and a compressed policy within the neural networks, without engaging in learning from data.
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Action Description
Clear-of-conflict (COC) No maneuvering necessary

Weak Left (WL) Weak left turn at 1.5 deg/s
Weak Right (WR) Weak right turn at 1.5 deg/s
Strong Left (SL) Strong left turn at 3 deg/s

Strong Right (SR) Strong right turn at 3 deg/s
Table 1 Turn advisories

B. nnenum neural network verifiers
The nnenum [8] neural network verifier forms the second main component of the technical foundation. The verifier

is designed to analyze neural networks. A critical downside of traditional neural networks is their sensitivity to minute
targeted changes in the inputs. This sensitivity makes these networks susceptible to adversarial attacks which can
manipulate the network’s decision-making. This threat is particularly significant in safety-critical and mission-critical
systems, necessitating robust verification methods. nnenum tool responds to this need by developing algorithms to
reason formally over the function computed by a neural network, thereby guaranteeing safety.

nnenum focuses on densely connected [23], feedforward neural architectures employing ReLU activation function,
which is defined as ReLU(𝑥) = max(0, 𝑥). These networks are tasked with mapping inputs to outputs by executing a
series of computations determined by their architecture. A typical neural model is constructed with 𝑙 layers, where
each layer 𝑖 is characterized by a weight matrix 𝑊𝑖 and a bias vector 𝑏𝑖 . For a given input 𝑥0 ∈ R𝑛, the output 𝑦𝑘 ∈ R𝑚
generated by such a neural construct is computed as follows:

𝑧 (1) = 𝑊1𝑥0 + 𝑏1, 𝑦1 = 𝜙(𝑧 (1) )

𝑧 (2) = 𝑊2𝑦1 + 𝑏2, 𝑦2 = 𝜙(𝑧 (2) )
...

𝑧 (𝑙) = 𝑊𝑙𝑦𝑙−1 + 𝑏𝑙 , 𝑦𝑘 = 𝜙(𝑧 (𝑙) )

Here, 𝑧 (𝑖) and 𝑦𝑖 denote the pre-activation and post-activation values at layer 𝑖, respectively. The function 𝜙

represents the activation function applied element-wise.

Definition 1 (Output Range) [8] Given a neural network that computes the function 𝑁𝑁 and an input set 𝐼 ⊆ R𝑛𝑖 , the
output range is the set of possible outputs of the network, when executed from a point inside the input set, defined as
Range(𝑁𝑁, 𝐼) = {𝑦𝑘 | 𝑦𝑘 = 𝑁𝑁 (𝑦1), 𝑦1 ∈ 𝐼}.

Definition 2 (Verification Problem for Neural Networks) [8] Given a neural network that computes the function
𝑁𝑁 , an input set 𝐼 ⊆ R𝑛𝑖 , and an unsafe set 𝑈 ⊆ R𝑛𝑜 , the verification problem for neural networks is to check if
Range(𝑁𝑁, 𝐼) ∩𝑈 = ∅.

In order to solve the neural network verification problem, nnenum relies on abstraction refinement, a technique
which uses abstractions to compute over-approximations of the set of possible outputs of a neural network. If the abstract
system fails to verify the property, refinement is performed to achieve a finer abstraction, proceeding to exact analysis
if necessary. This process is particularly useful when the abstractions can prove there is no intersection with unsafe
states, potentially increasing the speed of the verification process. nnenum is built on a unique approach of using fast
abstractions [24] for speed, combined with refinement through Rectified Linear Unit (ReLU) splitting [25] to increase
accuracy.

C. Verse
We use nnenum to verify the neural network output and generate a subset of all possible decisions. However, in the

context of system verification, nnenum does not take the dynamics into account. Hence we nnenum’s neural network
verification with Verse’s system verification capabilities.
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Definition 3 (System Verification) System verification refers to the process of assessing whether a dynamical system,
characterized by its state evolution over time under given inputs, adheres to specified safety and operational criteria.
Unlike neural network verification, which focuses on the correctness of output for given inputs in isolation, system
verification incorporates the dynamics of the entire system. This includes continuous control aspects (like flight dynamics
in aircraft systems) and discrete decision-making components (such as advisories from neural networks). The goal is to
determine whether, for a given set of initial states and inputs, the system can evolve into states that violate safety or
operational constraints. This involves the computation of reachable sets, which represent all possible states that the
system can enter over time.

Verse [6] is a powerful open-source library that broadens the applications of hybrid system verification technologies to
scenarios involving multiple interacting decision-making agents. Hybrid systems, characterized by both continuous
and discrete dynamics, are often complex and challenging to analyze, a notable example being the ACAS Xu system.
It involves continuous control (the flight dynamics of the aircraft) and discrete decision-making (advisories from
neural networks). Verse allows the ability to create decision-making agents, operating on specified decision logics, in
Python and offers functions for performing systematic simulation and verification through reachability analysis. The
computation of reachable sets is a fundamental problem in the analysis of dynamical systems. It allows for the prediction
of the system’s future states based on its current state and input, enabling a thorough evaluation of the system’s behavior
and the identification of potential safety violations. To represent the reachable set, Verse constructs a decision tree,
where each branch represents a different possible state of the system. To make the verification process efficient, Verse
performs this analysis incrementally: instead of starting from scratch each time, it saves and reuses data from previous
runs, thereby avoiding redundant computations while constructing the decision tree.

Verse relies on a reachability engine—a tool which performs the computations for reachability analysis. Verse
currently implements algorithms from [9] for performing reachability analysis for the continuous part of hybrid systems.
The algorithm is particularly efficient at calculating how small changes in the input can affect the output of the system, a
property known as sensitivity. Verse computes sensitivity of continuous trajectories by learning a discrepancy function
from simulation data with probably approximately correct (PAC) guarantees. Additionally, Verse is also capable of
handling uncertain dynamics within the system. This means that even when the system’s behavior is defined by complex
differential equations and is subject to noise or uncertainity in transition, Verse can still calculate the set of all possible
states the system can reach using a decomposition function.

Lastly, one of Verse’s unique capabilities is its map abstraction, where a map defines a set of paths that agents can
follow. Despite the potentially infinite number of paths, these paths fall into a finite set of categories, termed track
modes. This abstraction allows for the transferability of an agent’s decision logic across different maps with the same
track modes, making Verse a versatile solution for diverse multi-agent scenarios. This feature is particularly beneficial
in the contexts of motion control, air traffic management, and tactical collision avoidance scenarios such as ACAS Xu.

IV. Problem Formulation
We address a scenario involving two Unmanned Aircraft Systems (UAS): an ego aircraft and an intruder aircraft.

The primary focus is on the ego aircraft, which is equipped with the Airborne Collision Avoidance System for
Unmanned aircraft (ACAS Xu). This system outputs a compressed neural network that forms the crux of the ego UAS’s
decision-making logic. The objective of the ego UAS is to perform collision avoidance maneuvers. The intruder aircraft
operates under a predetermined decision logic. It is programmed to perceive its environment as devoid of any potential
threats, thereby consistently opting for a Clear of Conflict (COC) action (Table 1. To comprehensively address this
scenario, we will first take a look at the UAS dynamics and the ACAS Xu NNCS.

A. UAS Dynamics
We model the UAS as a Dubins aircraft. At any discrete time instant 𝑘 , the state of the UAS is defined by the state

vector 𝑠𝑘 , which encompasses
𝑠𝑘 = (𝑥𝑘 , 𝑦𝑘 , 𝜃𝑘 , 𝑘),

where 𝑥𝑘 and 𝑦𝑘 represent the UAS’s position in the horizontal plane, and 𝜃𝑘 is its heading angle. The index 𝑘 denotes
the discrete time step, capturing the temporal aspect of the UAS’s trajectory.
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The motion of the UAS is governed by the following set of difference equations:

𝑥𝑘+1 − 𝑥𝑘 = 𝑣 · cos(𝜃𝑘),
𝑦𝑘+1 − 𝑦𝑘 = 𝑣 · sin(𝜃𝑘),
𝜃𝑘+1 − 𝜃𝑘 = 𝑢,

where 𝑣 is the constant forward velocity, and 𝑢 represents the control action which is obtained from the decision logic.

B. Controller
The ACAS Xu neural network was trained using polar coordinate inputs. Hence, the state of the UAS needs to be

converted into the input space of the neural network. The ACAS Xu neural network takes as input the distance (𝜌),
angle to intruder wrt ego heading (𝜙) and heading of the intruder with respect to ego (𝜓). The conversion between the
Dubin’s model parameters and the NNCS inputs is as follows:

𝜌 =

√︃
(𝑥𝑖𝑛𝑡 − 𝑥𝑒𝑔𝑜)2 + (𝑦𝑖𝑛𝑡 − 𝑦𝑒𝑔𝑜)2,

𝜙 = 𝑎𝑡𝑎𝑛2
(

𝑦𝑖𝑛𝑡 − 𝑦𝑒𝑔𝑜

𝑥𝑖𝑛𝑡 − 𝑥𝑒𝑔𝑜 + 𝜌

)
− 𝜓𝑒𝑔𝑜,

𝜓 = 𝜓𝑖𝑛𝑡 − 𝜓𝑒𝑔𝑜 .

C. Problem Statement
In this work, we consider the problem of verification of the decision outputs provided by the ego UAS’s compressed

neural network and using them to perform reachability analysis and safety assertions for the system dynamics. This
verification process is critical for two main reasons:

1) Safety Violations: We aim to systematically evaluate whether the decisions proposed by the neural network
uphold the stringent safety standards necessary in aviation, particularly in scenarios where the intruder UAS’s
behavior is non-responsive or predictable in its persistence to maintain course.

2) Reachable Sets Analysis: Another crucial aspect of our study is to analyze the reachable sets, which represent
the set of all possible positions the ego UAS can occupy over time, given its range of initial state and potential
maneuver decisions. This analysis is pivotal in understanding the limits of the ego UAS’s maneuvering capabilities
under various conditions and decision logic outcomes.

V. Proposed Method
While existing methodologies [26, 27] provide frameworks for verifying neural network-controlled systems, they

typically do not account for the impact of control decisions on the system’s dynamics. Our methodology enhances the
verification process by not only examining the decisions themselves but also evaluating the influence these decisions
have on the system’s dynamic behavior. Prior to this work, the Verse tool did not natively support the verification of
decisions derived from neural network controllers. Subsection V.A discusses the methodology for decision generation
by ACAS Xu and the verification of the neural network using nnenum. Subsection V.B discusses the integration of
nnenum with Verse for state propagation and temporal analysis in hybrid systems.

A. Decision Generation
Let us denote the set of initial states of the ACAS Xu system as 𝑆0. Each element 𝑠0,𝑖 ∈ 𝑆0, where 𝑖 ∈ {1, . . . , 𝑛},

is an initial state that encapsulates the aircraft’s initial position and velocity. All these elements of the initial state 𝑠𝑖
cumulatively contribute to the decision-making process of the system.

Given these initial states, the ACAS Xu system generates a set of decisions, represented as 𝐷. The decisions are the
outcomes of the function 𝑓𝑁𝑁 , which assigns appropriate aircraft action to each possible state after operating on the
aircraft dynamics and the compressed policy within the neural network. Thus, 𝐷 = 𝑓𝑁𝑁 (𝑆0).

The function 𝑓𝑁𝑁 , despite being capable of approximating from data, is susceptible to being sensitive to minor
alterations in the inputs. This sensitivity is especially prominent in the context of decision-making networks, where it
might lead the system to fail due to sensor noise. To analyse the robustness of the system in presence of uncertainty, we
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employ a targeted sensor noise approach. In the specific scenario of our ego airplane, full observability of the intruder’s
state is attained through a sensor 𝑍 . The sensor gives the position of the intruder (𝑝𝑜𝑠) at every time instant.

Taking into consideration the measurement noise, the measurement equation for 𝑍 is shown below,

𝑓 ( ˆ𝑝𝑜𝑠) = 𝑓 (𝑝𝑜𝑠) + 𝜖, (1)

where 𝜖 is the noise component of signal measured by the ego. ˆ𝑝𝑜𝑠 follows a Gaussian distribution with arbitrarily
chosen mean and a variance.

In the context of the ACAS Xu system, we subject the function computed by the neural network, 𝑓𝑁𝑁 , to formal
reasoning with the aim of proving properties over the inputs and outputs of the network. We perform this reasoning by
running the network inputs through nnenum, which evaluates the possible decision set 𝐷 of the neural network. The
neural network is parsed layer by layer, with each neuron within a layer being examined individually. Based on the
neuron’s input, the set can be split into two using an intersection operation, a process referred to as refinement. This
refinement process is recursive, continuing until the property under investigation is either proven or found to be unsafe,
or there are no remaining neurons where overapproximation was performed. The outcome of this process is a set of
verified decisions,

Dverified = fnnenum (D),Dverified ⊆ D. (2)

This increases the dependability of the decisions generated by the ACAS Xu system.
The nnenum tool, on its own, is primarily focused on verifying the outputs of neural networks and does not directly

handle the complexities and dynamics of hybrid systems. These systems require a broader analysis, which not only
considers the validity of neural network outputs, but also includes the exploration of system states resulting from
these decisions under uncertain dynamics. Although nnenum provides a rigorous check on the reliability of decisions
generated by the neural network, it stops short of evaluating the potential system states that can result from these
decisions. These limitations underline the need for extrapolating this method that extends beyond the scope of existing
tools. By integrating the decision verification capabilities of nnenum with the reachability analysis of Verse, we propose
a comprehensive verification methodology that addresses these challenges.

B. Decision Propagation and Verification
Verse plays a critical role in propagating the set of current states and the corresponding set of verified decisions

to the subsequent time step. This propagation function computes the the one-step reachable set of states 𝑆𝑡+1 at the
subsequent time step based on the current states 𝑆𝑡 and the verified decisions 𝐷𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑑 .

St+1 = fVerse (St,Dverified) (3)

where 𝑓𝑉𝑒𝑟𝑠𝑒 is the function in Verse that propagates the dynamics. It calculates This process accurately carries the
uncertainty associated with the decisions derived from the ACAS Xu system through the dynamics of the aircraft,
resulting in a new reachable set of states at the next time step.

The final step of our methodology involves the iterative application of this process across multiple time steps. This
iterative mechanism, which effectively extends the state propagation and decision verification processes over time,
allows for the progressive exploration of the system’s behavior.

Each cycle of this iterative process generates a subsequent reachable set, representing the ensemble of all possible
states that the system can achieve at a particular time step. By conducting this process repeatedly over a defined period,
we can accumulate a sequence of reachable sets, each associated with a distinct time step:

St+n = fVerse (St+n−1, fnnenum (fNN (St+n−1))), (4)

where 𝑆𝑡+𝑛 represents the reachable set at the (𝑡 + 𝑛)-th time step. The function 𝑓𝑉𝑒𝑟𝑠𝑒, takes as inputs the set of
states from the previous time step, 𝑆𝑡+𝑛−1, and the set of decisions verified by nnenum, which is derived from the
neural network’s response to the states at the previous time step 𝑓𝑛𝑛𝑒𝑛𝑢𝑚( 𝑓𝑁𝑁 (𝑆𝑡+𝑛−1)). Equation (4) illustrates the
recursive nature of the process. Doing so offers a cohesive, iterative approach, ensuring that decisions made by a neural
network control system can be systematically evaluated, verified, and propagated through time. We will now discuss the
integration methodology in the next subsection.
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C. Integration Approach
The integration algorithm of Verse with nnenum, initiates with two aircraft (ego and intruder), each characterized by

distinct state functions and a set of control actions. The algorithm employs a queue-based approach, initializing with the
respective initial states and control actions of the aircraft. It iteratively processes elements from the queue, conducting
reachability analysis using Verse for the current state and control actions (equation (3)), and subsequently performs a
safety check on the reach set. Following this, the algorithm generates potential decisions from the ACAS Xu system and
verifies these using nnenum (equation (2)). For each combination of verified control actions, the algorithm updates the
queue with the new states and incremented time, ensuring a comprehensive exploration of all possible state-action pairs
over the simulation duration (equation (4)).

VI. Analysis
In our analysis, we explore two distinct scenarios facilitated by varying the ACAS Xu random seeds. These seeds

generate random initial states for the intruder aircraft, as well as distinct velocity profiles for both the intruder and the
ego aircraft (as illustrated in Figure 1). Each scenario presents a unique set of initial conditions, thereby providing
a comprehensive overview of the system’s behavior under varied operational contexts. To ensure a rigorous system
verification, we systematically extend our analysis across a broad spectrum of initial states for the ego aircraft.

(a) (b)

Fig. 1 ACAS Xu neural network closed loop simulation for cases 1 and 2. It shows the trajectories of the ego
and intruder aircrafts.

A. Scenario 1:
Let us consider a particular ACAS Xu scenario involving the ego and intruder aircrafts as shown in Figure 1a. As

described in Section IV, the intruder always takes the COC decision (Table 1). The ego aircraft performs a right turn
maneuver, consisting of COC, WR and SR, which is generated using ACAS Xu’s NNCS. We follow the steps outlined in
subsection V.C to integrate nnenum with Verse to perform verification of the ACAS Xu system. The verification is
performed for a set of initial starting positions of the ego aircraft given by

𝑠0 = [𝑥, 0, 𝜋/2, 0] ∀ 𝑥 ∈ [−1000, 1000] .

The other parameters used for simulation are given in Table 2.
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Parameter Value
Intruder initial state [-38430.17, 33296.38, 5.77, 0.0]

Ego velocity 148 ft/s
Intruder velocity 579 ft/s
Simulation time 96 s

ACAS Xu time step 1 s
Table 2 Parameters for scenario

(a) (b)

Fig. 2 Comparative analysis of trajectory generation and verification for the scenario depicted in Figure 1a. (a)
shows a subset of trajectories generated using nnenum (Dverified), and (b) presents the verification results of a
multi-aircraft scenario, involving ego and intruder aircrafts, using the integrated tool.

Figure 2a illustrates the subset of potential trajectories derived from the decision-making process as determined
by nnenum. In contrast, Figure 2b provides a visual representation of the corresponding reach tubes, showcasing the
trajectories’ spatial evolution over time taking into account the dynamics and sensor noise. These reach tubes are
obtained by augmenting nnenum’s capabilities through integration with the Verse toolkit, enabling a more comprehensive
analysis of the system’s dynamic behavior under the specified decision set. As can be seen from Figure 2b, none of the
reach tubes intersect with the intruder’s path. Hence, for this scenario, the decisions taken by ACAS Xu can be asserted
to be safe.

B. Scenario 2:
We consider the scenario shown in Figure 1b. The initial position of the ego aircraft remains the same as that of

scenario 1. i.e.
𝑠0 = [𝑥, 0, 𝜋/2, 0] ∀ 𝑥 ∈ [−1000, 1000] .

The other parameters used for simulation are given in Table 3.

Parameter Value
Intruder initial state [15929.77, -48053.48, 1.71, 0.0]

Ego velocity 690 ft/s
Intruder velocity 1147 ft/s
Simulation time 100 s

ACAS Xu time step 1 s
Table 3 Parameters for verification
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(a) (b)

Fig. 3 Comparative analysis of trajectory generation and verification for the scenario depicted in Figure 1b. (a)
shows a subset of trajectories generated using nnenum (Dverified), and (b) presents the verification results of a
multi-aircraft scenario, involving ego and intruder aircrafts, using the integrated tool.

In Figure 3a, we observe the range of potential trajectories computed by the nnenum framework, each corresponding
to different decisions made within the neural network control logic. Figure 3b complements this by showcasing the
reach tubes that account for the system’s dynamic responses to these decisions. A critical observation from Figure 3b is
the intersection of approximately half of the reach tubes with the intruder’s predicted trajectory, suggesting a potential
for unsafe encounters in those cases. Nonetheless, our methodology’s consideration of system dynamics reveals that
there exists a subset of initial conditions and associated decision paths where safety is maintained—indicated by the
absence of overlap between the reach tubes and the intruder’s trajectory. This nuanced analysis enables us to identify
specific operational states wherein the ACAS Xu system’s advisories lead to safe outcomes, despite the presence of risk
in other scenarios.

The comprehensive simulation of both the ego and intruder aircraft using Verse enables a more detailed and accurate
verification of the ACAS Xu system compared to just using nnenum. Such a holistic approach is imperative for ensuring
robustness and reliability in real-world operational environments where unpredictability is a common challenge.

VII. Conclusions and Future Work
This paper presents a novel approach to the verification of neural network-controlled systems, achieved through the

integration of the nnenum framework with the Verse toolkit. Our method addresses a significant challenge in the field of
dynamical systems, particularly in the verification of neural network outputs and their interaction with system dynamics.

Traditionally, the verification of neural network outputs has been conducted independently from the analysis of the
corresponding system dynamics, leading to potential inaccuracies and unsafe decisions, as highlighted by Bak et al.
[28]. Our integrated approach overcomes this issue by coupling the verification of neural network outputs with the
temporal propagation of system states. By iteratively verifying decisions and propagating states, our method maintains
an accurate and dynamic representation of the system, thus enhancing the precision of the verification process.

The proposed methodology significantly contributes to formal verification in dynamical systems. It introduces
a robust means of handling the complexity and nonlinearity inherent in many dynamical systems and their learned
controllers. By accurately computing reachable sets for systems operating based on learned controllers, our approach
provides a substantial verification advantage over verifiers that do not take the dynamics into account.

The use of Verse alongside nnenum ensures safety within a broad spectrum of operational conditions and against a
range of uncertainties. Our methodology’s efficacy is demonstrated through rigorous simulations, including a case-study
of the neural network-controlled ACAS Xu system. These simulations, which serve as illustrative examples, incorporate
varying initial conditions and the presence of intruder aircraft. They have validated the effectiveness of our integrated
system in ensuring safety and reliability. This work contributes to the existing body of knowledge by providing a
scalable and adaptable methodology that can extend to other autonomous systems requiring reliable safety verification,
from air traffic management to autonomous vehicular systems in urban environments.

Looking ahead, our future work aims to address current limitations by exploring more sophisticated models that
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account for additional real-world factors such as dynamic environmental conditions and variable performance parameters.
We also intend to enhance the computational efficiency of the system to enable real-time verification, crucial for practical
deployment.
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