
Online Learning and Planning in Time-Varying Environments:
An Aircraft Case Study

Gokul Puthumanaillam∗ Yuvraj Mamik† and and Melkior Ornik‡

University of Illinois Urbana-Champaign, Urbana, USA

Aerospace vehicles routinely encounter uncertain, time-varying, and partially observable
environments, presenting considerable challenges for autonomous operation and planning.
Traditional learning methods, which excel in static contexts, often falter in such highly dynamic
settings. Building on recently established Time-Varying Partially Observable Markov Decision
Processes (TV-POMDP) and Memory Prioritized State Estimation (MPSE) methodologies,
this work demonstrates their application in the advanced GUAM simulation environment,
which models NASA’s Generic UAM concept. The contribution of this paper lies in refining
these approaches to suit the complexity and unpredictability of aerospace contexts, where
conventional learning strategies are insufficient. By applying MPSE, we enhance the estimation
of environmental states with a weighted approach that respects the temporality and informational
value of observations. The subsequent policy optimization process is informed by the estimations
of these time-varying transition functions, leading to better long-term strategies that are aware
of the rapid environmental shifts characteristic of aerospace scenarios. The validation of
these methods through the GUAM simulator confirms their effectiveness, marking a positive
step towards their practical implementation in autonomous aerospace vehicles that encounter
continual, stochastic changes.

I. Nomenclature

𝑆 = finite set of states
𝐴 = finite set of actions
𝑍 = finite set of observations
𝑇 = state transition probability function
𝑂 = observation function
𝑅 = reward function
𝑏(𝑠) = belief state
𝑉 = value function
𝑇𝑡 = time-varying transition probability function
𝐴𝑠 = autocorrelation score
𝑅𝑠 = recency score
𝐷𝑠 = deviation score
𝑝 = position of the UAM in Earth-fixed coordinates
Θ = orientation of the UAM
𝜔 = angular velocity components about the body axes of the UAM
𝑢 = thrust force generated by the propulsion system
𝛿 = deflection angles for the ailerons, elevator, and rudder
Ω = rotor velocity
𝑝𝑔𝑝𝑠 = GPS coordinates
𝑧𝑎𝑙𝑡 = altitude measurement from altimeter
𝜔𝑖𝑚𝑢 = gyroscope readings
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II. Introduction

Almost by definition, aerospace vehicles regularly operate in exceptionally challenging conditions. They are
required to complete complex missions with little margin for error, and might do so in remote, uncertain, or hostile

environments where safety is critical and there is little opportunity for mid-mission repair or a mission repeat. While
autonomy offers an opportunity to reduce human risk and workload in these conditions, autonomous planning in such
environments faces significant technical obstacles. In contrast to humans, who can often rely on their experience to
intuitively respond to novel events, mission specifications, and environments, autonomous strategies necessarily depend
on some combination of robustness –implementation of often-conservative strategies designed to work across uncertain
system characteristics – and learning i.e., identification and adaptation to novel characteristics. Yet, robustness is only
possible if the uncertainty is not excessive: if the environment changes sufficiently, the vehicle might have to abandon
its prior strategy to complete its mission. On the other hand, learning is difficult in scenarios where an environment
continually changes and thus can only provide a limited amount of relevant data.

The proposed paper aims to tackle planning for aerospace systems in exactly such — possibly stochastic, time-varying,
a priori unknown — environments. To capture relevant features of complex environments, the technical content of
this paper will consider optimal planning for unknown time-varying, possibly partially observable, Markov decision
processes (TV-POMDP). Learning and subsequent planning for unknown time-invariant Markov Decision Process is
a classical problem in autonomy [1–3]. Relevant work [3–5] naturally relies on one of two mechanisms: (i) offline
learning, in which data about the system is collected through repeated experimentation and subsequently analyzed
to provide an optimal policy for future mission execution, and (ii) online learning, in which data is collected during
the mission and the control policy is adapted on the fly based on the arriving data. Importantly, in order to collect
enough data to learn, both of these frameworks necessarily assume that the environment remains constant during
experimentation and mission execution. If operated in a time-varying environment, standard learning strategies will
implicitly interpret change over time as “noise” and instead learn an optimal policy with respect to some imaginary,
“average” time-invariant environment [6]. Instead of employing methods unaware of the environmental change over time,
the theoretical foundation of this paper draws from emerging work on Memory Prioritized State Estimation (MPSE).

MPSE hinges on the understanding that in an environment characterized by incremental change, historical data
still holds considerable value to learn the transition function — there exists a substantial correlation between past
observations, recent observations and the current system state. To make use of this data, the methodology formulates an
optimization problem which seeks to find current and past environment parameters which are maximally likely given all
the collected data, constrained by the known maximal possible change in these parameters. The MPSE method has been
previously used to develop learning and planning mechanisms for standard POMDPs and TV-POMDPs [7]. While there
have been limited prior numerical experiments in aerospace domains — including a simple wind flow estimation model
and air density estimation for hypersonic vehicles — the MPSE-based work has now matured enough to yield results
in a high-fidelity, autonomy-driven aerospace environment. This paper seeks to introduce the MPSE-based methods
to the aerospace decision-making community through an application to NASA’s Generic UAM Simulation (GUAM)
aircraft model, emulating a NASA Lift+Cruise concept vehicle configuration [8]. The paper showcases a significant
step forward towards adoption of the MPSE approach in aerial autonomy: successful on-the-fly learning and control for
a simulated autonomous aerial vehicle operating in a complex, time-varying and previously unknown environment with
partial state observability.

III. Technical Background

A. Partially Observable Markov Decision Processes
Partially Observable Markov Decision Processes (POMDPs) provide a mathematical framework for modeling

decision-making in systems where the agent’s perception of the environment is limited and uncertain. A POMDP is
formally defined as a tuple (𝑆, 𝐴, 𝑍, 𝑇, 𝑂, 𝑅, 𝛾) where:

• 𝑆 is a finite set of states representing the possible configurations of the environment.
• 𝐴 is a finite set of actions available to the decision-making agent,
• 𝑍 is a finite set of observations that the agent can perceive,
• 𝑇 : 𝑆 × 𝐴 × 𝑆 → [0, 1] is the state transition probability function, with 𝑇 (𝑠′ |𝑠, 𝑎) denoting the probability of the

agent transitioning to state 𝑠′ from state 𝑠 after taking action 𝑎,
• 𝑂 : 𝑆 × 𝐴 × 𝑍 → [0, 1] is the observation function, where 𝑂 (𝑧 |𝑠′, 𝑎) represents the probability of the agent

receiving observation 𝑧 when action 𝑎 results in state 𝑠′,
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• 𝑅 : 𝑆 × 𝐴→ R is the reward function, which assigns a numerical reward to each action taken in a given state,
• 𝛾 ∈ [0, 1) is the discount factor, which represents the difference in importance between future rewards and

immediate rewards.
The goal in a POMDP is to find a policy 𝜋 : 𝐻 → 𝐴, mapping histories 𝐻 of states, actions, and observations to

actions, that maximizes the expected cumulative discounted reward. This objective is expressed as

max
𝜋
E

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ) | 𝜋
]
, (1)

where 𝑠𝑡 and 𝑎𝑡 are the state and action at time 𝑡, respectively.
Finding the optimal policy in equation 1 is challenging due to the exponential growth in computational resources

required as the number of dimensions (state variables) in the problem increases. In stochastic and partially observable
environments, an agent’s direct observation of the true state is often obscured or incomplete. In stochastic and partially
observable environments, an agent’s direct observation of the true state is often obscured or incomplete. The agent must
maintain a belief state 𝑏(𝑠), a probability distribution over 𝑆, updated after each action and observation according to
Bayes’ rule:

𝑏′ (𝑠′) = 𝑂 (𝑧 |𝑠′, 𝑎)∑𝑠∈𝑆 𝑇 (𝑠′ |𝑠, 𝑎)𝑏(𝑠)∑
𝑠′′∈𝑆 𝑂 (𝑧 |𝑠′′, 𝑎)∑𝑠∈𝑆 𝑇 (𝑠′′ |𝑠, 𝑎)𝑏(𝑠)

(2)

The optimal policy in a TV-POMDP setting cannot be explicitly found due to the computational issues mentioned
earlier. These challenges make it impractical to enumerate and evaluate all possible belief states and their corresponding
action sequences. Instead, approximation methods such as point-based value iteration or Monte Carlo sampling are
employed, which manage the complexity by focusing on a subset of belief points or simulations of the environment.

B. Time-Varying Partially Observable Markov Decision Processes
The assumption of stationary dynamics within the traditional POMDP framework limits its applicability in real-world

scenarios, where environmental conditions are subject to constant change. As underscored by [9], the challenge in
adapting POMDPs to non-stationary contexts lies in the temporal aspect of the environment. Time is unidirectional and
inherently linked to the changing state of the world; incorporating it into the state space leads to two main bottlenecks:
an increase in its size, and consequently, the computational complexity and secondly, not more than one observation
sample can be collected in each time step. These challenges render traditional learning based approaches infeasible
for time-varying applications, particularly when decision-making processes must be executed on-the-fly in dynamic
environments.

Time-Varying POMDPs (TV-POMDPs) are proposed as an elegant way to encode timporal variation. By
conceptualizing transition probabilities as time-varying functions, TV-POMDPs capture the essence of environmental
dynamism without necessitating a direct increase in the dimensionality of the state space. The modified framework,
represented as (𝑆, 𝐴, 𝑍, 𝑇𝑡 , 𝑂, 𝑅𝑡 , 𝛾, 𝑏0), thus includes:

• A time-varying transition probability function 𝑇𝑡 : 𝑆 × 𝐴 × 𝑆 × N→ [0, 1], which maps a state-action pair and
a discrete time index to a probability distribution over subsequent states, reflecting the probabilistic nature of
environmental changes over time.

• A time-varying reward function 𝑅𝑡 : 𝑆 × 𝐴 × N→ R, which adapts the immediate reward associated with actions
taken in specific states at different times, accommodating the shifting objectives or costs that can occur as the
environment evolves.

To operationalize the objective function described in equation (1) in a dynamic, time-varying environment, we
introduce the value function 𝑉𝑡 (𝑏), which encapsulates the expected future rewards from a given belief state 𝑏 at time 𝑡.
The value function is recursively defined to account for both immediate rewards and the future benefits of actions taken
in the current belief state. It is expressed as:

𝑉𝑡 (𝑏) = max
𝑎∈𝐴

{∑︁
𝑠∈𝑆

𝑏(𝑠)
[
𝑅𝑡 (𝑠, 𝑎, 𝑡) + 𝛾

∑︁
𝑠′∈𝑆

𝑇𝑡 (𝑠, 𝑎, 𝑠′, 𝑡)𝑉𝑡+1 (𝑏′)
]}
, (3)

where 𝑉𝑡+1 (𝑏′) represents the value of the subsequent belief state 𝑏′, taking into consideration the time-varying
transitions 𝑇𝑡 and the instantaneous reward 𝑅𝑡 .

At each time step 𝑡, the policy 𝜋 is derived by choosing the action 𝑎 that maximizes the immediate reward plus the
discounted value of future rewards, as estimated by the value function.
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C. GUAM Simulator
GUAM, as a simulation tool, provides an essential platform for validating our control model through extensive data

generation and analysis. GUAM is a comprehensive simulation architecture [10] employed for spacecraft and aircraft
models. It incorporates both medium and high fidelity aero-propulsive models, namely the Polynomial Model [11].
These models are instrumental in simulating the aerodynamic characteristics, providing a detailed understanding of the
forces and moments acting upon them.

The simulation requires specific inputs to accurately model the aircraft’s dynamics:
• Reference trajectory data: In order to generate a trajectory for the AAM, we feed in the reference trajectory that

needs to be followed. This encompasses the heading frame velocity, inertial positions, and heading angles, which
are critical for defining the desired flight path of the vehicle.

• Environment and turbulence models: Environment models controls the effect of the atmospheric conditions,
including wind and turbulence in the simulation.

• Aircraft model parameters: These parameters covers aspects such as lift and cruise configurations, weight, center
of gravity, and actuator types. Each of these parameters are meticulously calibrated to reflect the design and
performance characteristics of the Advanced Air Mobility (AAM) vehicle under study.

IV. Proposed Methodology

Fig. 1 Memory Prioritized State Estimation adapted for the GUAM framework

The proposed methodology, as illustrated in Figure 1, presents a comprehensive approach adapted to the GUAM
environment, specifically tailored to address the challenges of autonomous navigation of AAMs in time-varying
conditions. This methodology integrates several key components: data collection and feature extraction, clustering and
window sampling of sensor data, memory prioritization, and a modified approach to Maximum Likelihood Estimation
(MLE). Each of these components plays a critical role in the estimation of the time-varying transition probability function
(𝑇𝑡 ) in a TV-POMDP framework. The architecture diagram (Figure 1) encapsulates the workflow and interdependencies
of these components, providing a visualization of how the system processes data, makes decisions, and adapts to
environmental changes. The subsequent subsections delve into each component in detail, elucidating their individual
contributions to the overall efficacy of the proposed approach.
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A. Data Collection and Feature Extraction
The GUAM Simulator is used to record a multidimensional time series data from the sensors X ∈ R𝑚×𝑝 , where 𝑚

represents the number of time steps, and 𝑝 is the number of sensor measurements at each time step. The raw sensor data
matrix X is preprocessed to center the variables by subtracting the mean of each column from the corresponding sensor
measurements.

Principal Component Analysis (PCA) [12] is then applied to reduce the dimensionality of the data while retaining
most of the variance. The PCA transformation is achieved through the eigen-decomposition of the covariance matrix C
of the centered data:

C =
1

𝑚 − 1
X⊤X. (4)

The eigenvalues 𝜆𝑖 and eigenvectors ⊑𝑖 of C are computed, and the eigenvectors are ordered by decreasing
eigenvalues. The top 𝑘 eigenvectors V𝑘 = [⊑1, ⊑2, . . . , ⊑𝑘] corresponding to the largest 𝑘 eigenvalues are selected to
form the projection matrix.

The feature set F is obtained by projecting the centered data X onto the subspace spanned by V𝑘 :

F = XV𝑘 . (5)

Each row in F represents the extracted features for a given time step in a reduced 𝑘-dimensional space, where
𝑘 ≪ 𝑝.

This preprocessing of raw observations helps us condense the high-dimensional sensor data into a more manageable
form, reducing computational complexity and focusing on the most informative aspects of the data. Secondly, in
the context of Memory Prioritized State Estimation (MPSE) and Partially Observable Markov Decision Processes
(POMDPs), a more compact and essential representation of the state space is crucial for efficient state estimation and
decision-making processes. By distilling the sensor data into principal components, we ensure that the most significant
features influencing the agent’s state are retained while discarding redundant or less informative data.

B. Sensor Data Clustering and Window Sampling
The sensor data is clustered to identify patterns and relationships within the observations. Doing so helps segment

the data into meaningful groups, facilitating the identification of windows of observations, where a window refers to an
interval of time containing multiple successive observations, that are likely to be more informative about the current
system dynamics. With the feature-selected dataset F , we apply 𝑘-means clustering algorithm [13] to segment the data
into 𝑘 clusters, where each cluster contains observations with similar features. The clustering can be mathematically
represented as a function Ψ : R𝑘 → {1, . . . , 𝑘}, which assigns each feature vector to one of the 𝑘 clusters.

For each cluster 𝐶𝑖 , we identify observation windows, 𝑊𝑖 , based on temporal proximity and feature similarity.
Mathematically, a window𝑊𝑖 is defined as a sequence of feature vectors F𝑖 ⊂ F that fall within a specific time range
and cluster:

𝑊𝑖 = {F𝑖 | F𝑖 = F (𝑡𝑠 : 𝑡𝑒),Ψ(F (𝑡)) = 𝐶𝑖 ,∀𝑡 ∈ [𝑡𝑠 , 𝑡𝑒] ⊆ {1, . . . , 𝑚}}. (6)

These windows are then used to construct the temporally contextualized inputs for the memory prioritization step,
ensuring that the dynamics of the environment are captured over different intervals for subsequent analysis.

Within each observation window, not every observation holds equal value for the estimation process. To efficiently
allocate computational resources, we introduce a memory prioritization mechanism. It assigns weights to observations
based on their autocorrelation, recency, and deviation – key indicators of informativeness in time-varying contexts.

C. Memory Prioritization
Memory prioritization effectively filters out less informative observations, reducing the computational load and

improving the efficiency and accuracy of the estimation process. Given the feature set F , we evaluate the temporal
relevance and informativeness of each feature vector 𝑓𝑖 within the window 𝑊𝑖 . The assessment involves three key
metrics:

1) Autocorrelation: This metric assesses the temporal dependency between observations, capturing the extent to
which past states influence the current state. To measure the dependence of features, the autocorrelation for
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a window 𝑊𝑖 of features at lag 𝑘 (where lag 𝑘 refers to the time separation between the observations being
correlated) is calculated as follows:

𝜌𝑊𝑖
(𝑘) =

∑ |𝑊𝑖 |
𝑗=𝑘+1 ( 𝑓 𝑗 − 𝑓𝑊𝑖

) ( 𝑓 𝑗−𝑘 − 𝑓𝑊𝑖
)√︃∑ |𝑊𝑖 |

𝑗=1 ( 𝑓 𝑗 − 𝑓𝑊𝑖
)2 ∑ |𝑊𝑖 |

𝑗=1 ( 𝑓 𝑗−𝑘 − 𝑓𝑊𝑖
)2
, (7)

where 𝑓𝑊𝑖
is the mean feature vector in window𝑊𝑖 .

2) Recency: Observations lose relevance with time, which is quantified by the recency score 𝑅𝑠. 𝑅𝑠𝑖 for a feature
vector 𝑓𝑖 is inversely proportional to the time elapsed since its observation:

𝑅𝑠𝑖 =
1

𝑡current − 𝑡𝑖 + 𝜀
, (8)

where 𝑡current is the current time step, 𝑡𝑖 is the time step when 𝑓𝑖 was observed, and 𝜀 is a small constant to avoid
division by zero.

3) Deviation: The deviation score 𝐷𝑠𝑖 quantifies how much the feature vector 𝑓𝑖 deviates from the mean of its
window:

𝐷𝑠𝑖 = ∥ 𝑓𝑖 − 𝑓𝑊𝑖
∥, (9)

where ∥ · ∥ denotes the Euclidean norm, and 𝑓𝑊𝑖
is the mean feature vector for window𝑊𝑖 .

The weight 𝜔𝑖 assigned to each feature vector 𝑓𝑖 combines these factors and is defined as

𝜔𝑖 = 𝑤𝑎𝐴𝑠𝑖 + 𝑤𝑟𝑅𝑠𝑖 + 𝑤𝑑𝐷𝑠𝑖 , (10)

where 𝐴𝑠𝑖 = 𝜌𝑊𝑖
(𝑡current − 𝑡𝑖) is the autocorrelation score for 𝑓𝑖 , and 𝑤𝑎, 𝑤𝑟 , and 𝑤𝑑 are the weights corresponding to

autocorrelation, recency, and deviation, respectively. These values are chosen based on the nature of the system. The
aggregate weight 𝜔𝑖 serves as a heuristic for the feature vector’s expected contribution to the accurate estimation of the
state transition probabilities in the TV-POMDP framework.

D. Modified Maximum Likelihood Estimation
The Modified Maximum Likelihood Estimation (MLE) incorporates the weights from the memory prioritization step.

The likelihood function is defined as 𝐿 (𝑇𝑡 |F ,A,Ω) over the feature set F , action set A, and weight set Ω, reflecting
the probability of observing a particular sequence of features given a sequence of actions and the model parameters 𝑇𝑡 :

𝐿 (𝑇𝑡 |F0:𝑇 ,A0:𝑇 ,Ω0:𝑇 ) =
𝑇∏
𝑡=0

[
Prob𝑇𝑡 ( 𝑓𝑡 |𝑎𝑡 ,Ω𝑡 )

]𝜔𝑡
, (11)

where Prob𝑇𝑡 ( 𝑓𝑡 |𝑎𝑡 ,Ω𝑡 ) is the probability of observing feature vector 𝑓𝑡 given action 𝑎𝑡 and the model parameters at
time 𝑡, weighted by 𝜔𝑡 from the set Ω. This modified MLE effectively integrates the sequential, weighted nature of the
observations and actions within a dynamic environment, providing a computationally efficient approach to estimating
the time-varying transition probabilities in the TV-POMDP framework.

To estimate 𝑇𝑡 , the time-varying transition probability function, a constrained optimization problem is defined that
maximizes the log-likelihood function subject to constraints on the maximal rate of change between successive time
steps, denoted by Δmax. The optimization problem is formulated as follows:

𝑇𝑡 = arg max
𝑇𝑡

𝑇∑︁
𝑡=0

𝜔𝑡 log Prob𝑇𝑡 ( 𝑓𝑡 |𝑎𝑡 ,Ω𝑡 )

subject to ∥𝑇𝑡 − 𝑇𝑡−1∥ ≤ Δmax, ∀𝑡 ∈ {1, . . . , 𝑇},
(12)

The reference to the work in [6] proves that this optimization problem is convex, which implies that it can be solved
efficiently using optimization libraries. We used CVXOPT [14] as our solver. The result is an estimation of 𝑇𝑡 that is not
only informed by the most relevant and recent observations but also utilizes only the prioritized data thereby making it
computationally efficient.
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E. Policy Optimization and Planning
The optimal policy 𝜋∗ seeks to maximize the expected cumulative discounted reward within the framework of the

estimated transition probabilities 𝑇𝑡 . Doing so involves updating the belief state 𝑏𝑡 (𝑠) at each time step 𝑡, which is a
probability distribution over the state space 𝑆, based on the latest observations and actions. The updated belief state
𝑏𝑡+1 (𝑠′) is computed with the estimated 𝑇𝑡 from equation (12) as follows:

𝑏𝑡+1 (𝑠′) = 𝜂Ω(𝑧𝑡 |𝑠′, 𝑎𝑡 )
∑︁
𝑠∈𝑆

𝑇𝑡 (𝑠, 𝑎𝑡 , 𝑠′)𝑏𝑡 (𝑠), (13)

where Ω(𝑧𝑡 |𝑠′, 𝑎𝑡 ) denotes the observation likelihood of receiving 𝑧𝑡 given the action 𝑎𝑡 and the subsequent state 𝑠′,
and 𝜂 is a normalizing constant ensuring that 𝑏𝑡+1 (𝑠′) forms a valid probability distribution.

The policy 𝜋(𝑏) is determined by maximizing the expected utility, which is computed through the value function
𝑉𝑡 (𝑏) for the belief state 𝑏. This is formulated as:

𝜋(𝑏) = arg max
𝑎∈𝐴

{∑︁
𝑠′∈𝑆

𝑏(𝑠)𝑅𝑡 (𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈𝑆

𝑇𝑡 (𝑠, 𝑎, 𝑠′)𝑉𝑡+1 (𝑏′)
}
, (14)

where 𝑅𝑡 (𝑠, 𝑎) is the immediate reward received after taking action 𝑎 in state 𝑠 at time 𝑡, and 𝛾 is the discount factor
representing the trade-off between immediate and future rewards. This policy is recomputed at every time instant,
adapting to the updates in the transition probability estimates. This optimization strategy also ensures that the policy
is not only optimal with respect to the long-term rewards but also adaptive to the dynamic changes captured by the
time-varying transition probabilities 𝑇𝑡 .

Having established the methodology, we now transition to an in-depth analysis of the system’s performance.

V. Analysis
This section presents the empirical evaluation of our proposed methodology within a time-varying scenario. We

consider a scenario where the GUAM agent is provided with 200 waypoints which track a reference trajectory. The
goal of the agent is to track the trajectory as close as possible by following the waypoints. Adapted from [15],
the experiment utilizes GUAM simulator’s turbulence models to reproduce the effects of time-varying winds and
aerodynamic disturbances.

A. Simulation Setup
The simulation setup employed the GUAM environment with the Lift+Cruise aircraft model within GUAM, designed

to be representative of a NASA Lift+Cruise vehicle configuration [8].

1. State Space
The state space S is a detailed representation of the vehicle’s kinematic and dynamic attributes and includes

additional parameters pertinent to the operational health of the UAM. It is formally defined as:

S = {(𝑝, ¤𝑝,Θ, 𝜔, sys) | 𝑝 ∈ R3, ¤𝑝 ∈ R3,Θ ∈ 𝑆𝑂 (3), 𝜔 ∈ R3, sys ∈ {0, 1}𝑛},

where:
• 𝑝 = (𝑥, 𝑦, 𝑧) ∈ [−1500, 1500]3 denotes the position of the UAM in Earth-fixed coordinates.
• ¤𝑝 = ( ¤𝑥, ¤𝑦, ¤𝑧 ∈ [−50, 50]3) represents the velocity vector in the respective axes.
• Θ = (𝜙, 𝜃, 𝜓) ∈ [−𝜋, 𝜋]3 denotes the orientation of the vehicle given by roll, pitch, and yaw angles.
• 𝜔 = (𝑝, 𝑞, 𝑟) ∈ [−1, 1]3 represents the angular velocity components about the body axes.
• sys is a binary vector representing the status of the flight. A value of 0 represents the simulation ended due to the

aircraft crashing.
The status of the flight 𝑠𝑦𝑠 = 0 leads to an immediate cessation of the simulation run. It is caused by one of the

following reasons:
• Structural limits are exceeded, where the forces or torques acting on the vehicle surpass its physical tolerance,

risking structural integrity.
• Boundary violations occur when the vehicle’s position 𝑝 exits the designated safe operational envelope
[−1500, 1500]3.
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• Loss of control is detected, characterized by orientation angles Θ or angular velocities 𝜔 falling outside the
operational range [−𝜋, 𝜋]3 and [−1, 1]3, respectively.

• Collision with obstacles or terrain within the simulation environment is registered.
• System failures transpire, indicated by any element of the binary vector sys being set to 0, signifying critical

malfunctions.
• Unsafe landing dynamics are encountered if the landing velocity ¤𝑝 exceeds the thresholds for a controlled descent

and touchdown.

2. Action Space
The action space A encompasses the set of controls the UAM can execute, directly influencing its state transition.

This space is characterized by:

A = {(𝑢, 𝛿,Ω) | 𝑢,Ω ∈ R+, 𝛿 ∈ R3},

where:
• 𝑢 ∈ [0, 200] represents the thrust force generated by the propulsion system.
• 𝛿 = (𝛿𝑎, 𝛿𝑒, 𝛿𝑟 ) ∈ [−30◦, 30◦]3 comprises the deflection angles for ailerons, elevator, and rudder, respectively.
• Ω represents the rotor velocity.

3. Observation Model
The observation model Z captures the sensory feedback from the environment and the vehicle’s state, which is

partially observable due to sensor noise and limitations. It is expressed as:

Z = {(𝑝𝑔𝑝𝑠 , 𝑧𝑎𝑙𝑡 , 𝜔𝑖𝑚𝑢 | 𝑝𝑔𝑝𝑠 ∈ R2, 𝑧𝑎𝑙𝑡 ∈ R+, 𝜔𝑖𝑚𝑢 ∈ R3},

where:
• 𝑝𝑔𝑝𝑠 = (𝑥𝑔𝑝𝑠 , 𝑦𝑔𝑝𝑠) ∈ [−1500, 1500]2 denotes the GPS coordinates.
• 𝑧𝑎𝑙𝑡 ∈ [0, 500] represents the altitude measurement from the altimeter.
• 𝜔𝑖𝑚𝑢 = (𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧) ∈ [−1, 1]3 captures the gyroscope readings which measure the angular velocity of the

vehicle in three dimensions: roll, pitch, and yaw.

4. Reward Function
The reward function R, for state-action pair (𝑠𝑡 , 𝑎𝑡 ) is structured to encourage optimal path following and task

completion [16], defined as:

R(𝑠𝑡 , 𝑎𝑡 ) =



+10, for each waypoint reached in the correct sequence within a 3m radius,
+50, upon successful arrival at the final goal,
−1, for every unit distance traveled, when not reaching a waypoint, to

encourage efficient path following,
−1000, if the UAM experiences system failure (𝑠𝑦𝑠 = 0),
0, when not moving from its current position i.e., hovering.

The reward values are quantified such that reaching waypoints and the final goal yields positive rewards, while
inefficient trajectories or system failures incur penalties, promoting a balance between precision and expedience.

5. Time-varying disturbances:
The time-varying transition probability function, denoted by 𝑇𝑡 (𝑠, 𝑎, 𝑠′, 𝑡), quantifies the likelihood of transitioning

from state 𝑠 to state 𝑠′ given action 𝑎 at time 𝑡. In our simulation, we consider the environmental dynamics induced by
aerodynamic disturbances, which are represented by a time-varying component of the transition probabilities. This
component is modeled over the simulation time window [0, 10] as:

𝑇𝑡 (𝑠, 𝑎, 𝑠′, 𝑡) =
1

1 + 𝑒−(𝑡−5) for 0 ≤ 𝑡 ≤ 10, (15)
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where 𝑡 is the discrete time step within the simulation timeframe. The subscript 𝑡 in 𝑇𝑡 emphasizes the dependency
of the transition probabilities on the time step, reflecting the dynamic nature of the environment. Furthermore, the rate
of change in the transition probabilities is constrained by Δmax = 0.2:

|𝑇𝑡 (𝑠, 𝑎, 𝑠′, 𝑡) − 𝑇𝑡−1 (𝑠, 𝑎, 𝑠′, 𝑡 − 1) | ≤ Δmax, (16)

When an aerodynamic disturbance occurs, it causes the vehicle to deviate from its intended trajectory. The
disturbance’s impact is modeled as a deviation angle 𝜃, representing the yaw response of the UAM to gusts of wind
or turbulent airflow. While 𝜃 originates from a normal distribution due to the stochastic nature of wind disturbances,
practical considerations require that this angle be bounded within the UAM’s operational limits. Consequently, 𝜃 follows
a truncated normal distribution 𝜃 ∼ Ntrunc (0, 𝜎2, 𝜃min, 𝜃max), where 𝜎2 denotes the variance of the wind disturbance
effect, and 𝜃min = −10◦, 𝜃max = 10◦ are the lower and upper truncation points, respectively.

B. Baseline Comparisons
To validate the performance of our TV-POMDP framework, we compare it against three established baselines: model

reference adaptive control (MRAC), robust control and the standard POMDP approach that considers the environment
to be time-invariant and uses classical estimation techniques. All the baselines serve to benchmark the efficacy of our
proposed method in handling complex, time-varying scenarios within the GUAM simulation environment.

1. MRAC Adaptive Controller for UAM
In the context of our UAM simulation, the MRAC adaptive controller is tailored to maintain the vehicle’s trajectory

within close proximity to a reference path, despite the unpredictable aerodynamic disturbances encountered. The
reference model for the UAM is designed to represent an ideal flight path in an undisturbed environment.

The reference model dynamics are represented as:

¤𝑥ref (𝑡) = 𝐴ref𝑥ref (𝑡) + 𝐵ref𝑢ref (𝑡), (17)

where 𝑥ref (𝑡) is the state vector describing the desired position and orientation in the absence of disturbances, and 𝑢ref (𝑡)
is the control input vector that would maintain this desired state.

Given the aerodynamic nature of the disturbances, the MRAC is configured to adjust the control inputs to the UAM’s
propulsion and control surfaces to counteract the effects of wind gusts and turbulence. The control law, incorporating
adaptive gains, is defined as:

𝑢(𝑡) = 𝐾ad (𝑡)𝑥(𝑡) + 𝐾ref𝑟 (𝑡), (18)

where 𝐾ad (𝑡) dynamically adjusts based on the observed state deviations due to disturbances, 𝑥(𝑡) is the current state of
the UAM, and 𝑟 (𝑡) is a reference signal aimed at guiding the UAM along the reference path.

The adaptive gains are updated by the rule:

¤𝐾ad (𝑡) = −Γ
(
𝑒(𝑡)𝑥(𝑡)⊤ + 𝛽𝐾ad (𝑡)

)
, (19)

where 𝑒(𝑡) = 𝑥(𝑡) − 𝑥ref (𝑡) is the tracking error, Γ is a diagonal matrix of positive adaptation rates, and 𝛽 is a forgetting
factor that mitigates the influence of older errors on the adaptive gains.

2. Standard POMDP Approach for UAM
The standard Partially Observable Markov Decision Process (POMDP) approach assumes a static operational

environment. The objective function is formulated as equation (1) and utilizes a deterministic policy based on a static
belief model, which is updated using conventional Bayesian estimation techniques [17].

3. Robust Controller for UAM
The robust controller is engineered to withstand uncertainties and disturbances without the need for real-time

parameter adaptation.
The design of the robust controller is premised on worst-case scenario modeling. It aims to maintain the vehicle’s

stability and trajectory tracking despite the worst possible disturbance effects within a predefined set. The controller
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employs a fixed-gain feedback law, which is determined through a rigorous design process that accounts for the
uncertainties and disturbances characterized in the simulation environment.

The control law is formalized as:
𝑢(𝑡) = 𝐾robust𝑥(𝑡), (20)

where 𝐾robust is a constant gain matrix computed during the design phase. The matrix 𝐾robust is derived through
𝜇-synthesis tailored to ensure performance and stability in the presence of model uncertainties and external disturbances.

C. Simulation Execution and Evaluation
The performance of the optimized policy was evaluated through a series of in-flight maneuvers within a single

comprehensive simulation case, including:
• A transition from hover to forward flight.
• A climbing right-hand turn during cruise flight.
• Flight under sinusoidal input conditions.
These segments were components of a unified simulation trajectory designed to test the autonomous vehicle’s ability

to adapt its control policy to changes in operating conditions. The integrated test case systematically examined the
vehicle’s performance through hovering, cruise, and aggressive maneuvering within a single simulation run.

We monitored the entire simulation execution using Simulink’s built-in scopes, which provided real-time feedback.
Resultant trajectories and control inputs were further analyzed using GUAM’s plotting utility to visualize the vehicle’s
performance throughout the full sequence, indicating successful policy adaptation in response to varying flight demands.

The results indicated that the optimized policy 𝜋∗ provided by our TV-POMDP framework could successfully
navigate the vehicle through the simulated time-varying disturbances. The policy demonstrated adaptive control behavior
that was robust to environmental changes, validating the effectiveness of the proposed methodology.

Time-Varying Transition
𝑇𝑡 = 1/(1 + 𝑒−(𝑡−5) ); 0 ≤ 𝑡 ≤ 10

Total distance traveled
before crashing (ft) MAE

MPSE 1834 0.10321

MRAC 1318 0.29876
POMDP
(Classical estimation) 1210 0.30219

Robust Controller 730 0.40862
Table 1 Performance comparison of the GUAM agent con-
trolled by MPSE, POMDP with classical estimation, MRAC,
and a robust controller over a time-varying transition function.
The total distance before crashing and the Mean Absolute
Error (MAE) are tabulated to evaluate control efficacy.

Fig. 2 Error evolution over time for the
GUAM agent controlled by MPSE, POMDP
with classical estimation, robust controller
and MRAC.
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(a) (b)

(c) (d)

Fig. 3 Visualisation of the trajectories followed by the GUAM agent operating to achieve a complex maneuver(a)
illustrates the path followed by the MRAC controller, (b) illustrates the path followed by the system modeled as
a POMDP coupled with classical estimation, (c) illustrates the path followed by the robust controller, and (d)
illustrates the path followed by modeling the system as a TV-POMDP coupled with a MPSE.

The results, as depicted in Figure 3 and quantified in Table 1, elucidate the trajectories and performance metrics
of the GUAM agent executing a complex maneuver sequence from hover to forward flight, followed by cruise and
modulation through sinusoidal inputs. The trajectories illustrate the paths rendered by the GUAM agent under the control
of the MRAC, POMDP with classical estimation, robust controller and the TV-POMDP coupled with MPSE. Notably,
while the MRAC and POMDP controllers can navigate the agent toward the goal, we observe significant deviations
from the reference trajectory, leading to premature system failures (𝑠𝑦𝑠 = 0) before reaching the final waypoint. Robust
controller on the other hand, fails much before the other baselines – in particular due to loss of control where the
angular velocities falls outside the operational range ([−1, 1]3). These deviations are quantitatively corroborated by the
higher Mean Absolute Error (MAE) values reported for MRAC POMDP and robust controller as opposed to the lower
MAE for the MPSE approach. Furthermore, the total distance traveled before a system crash reinforces the superior
robustness of the MPSE method, a considerable increase over the distance traversed under MRAC and POMDP controls.
Figure 2 shows the error in the trajectory tracked over time. It is evident that the error associated with the MPSE
approach not only diminishes at a notably accelerated rate but also stabilizes at a substantially lower magnitude relative
to the comparative methods. These results collectively underscore the augmented accuracy and reliability offered by
the TV-POMDP framework with MPSE in maintaining adherence to the desired trajectory and achieving operational
longevity, even in the face of intricate dynamic disturbances.
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VI. Conclusion
This work has demonstrated the application of Time-Varying Partially Observable Markov Decision Processes

(TV-POMDP) and Memory Prioritized State Estimation (MPSE) within the advanced GUAM simulation environment.
The results underscore the necessity of online adaptive planning methodologies for aerospace vehicles faced with
uncertain, time-varying, and partially observable environments.

Empirical evaluations within the GUAM simulator have substantiated the effectiveness of our refined approach. The
results highlight the heightened accuracy in trajectory following when compared to traditional methods and increased
resilience to system perturbations. In conclusion, this work not only provides an application of a robust framework for
the advancement of autonomous aerospace systems but also lays the groundwork for future implementations that will
benefit real-world aeronautical applications. Future work will focus on adapting these simulation-verified methods to
enhance computational efficiency thus bringing us closer to realizing fully autonomous aerospace systems capable of
reliable operation in complex, unpredictable, and time-varying environments.
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