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Abstract— Optimal decision-making presents a significant
challenge for autonomous systems operating in uncertain,
stochastic and time-varying environments. Environmental
variability over time can significantly impact the system’s optimal
decision making strategy for mission completion. To model
such environments, our work combines the previous notion of
Time-Varying Markov Decision Processes (TVMDP) with partial
observability and introduces Time-Varying Partially Observable
Markov Decision Processes (TV-POMDP). We propose a two-
pronged approach to accurately estimate and plan within the
TV-POMDP: 1) Memory Prioritized State Estimation (MPSE),
which leverages weighted memory to provide more accurate
time-varying transition estimates; and 2) an MPSE-integrated
planning strategy that optimizes long-term rewards while
accounting for temporal constraint. We validate the proposed
framework and algorithms using simulations and hardware,
with robots exploring a partially observable, time-varying
environments. Our results demonstrate superior performance
over standard methods, highlighting the framework’s
effectiveness in stochastic, uncertain, time-varying domains.

I. INTRODUCTION

Consider an autonomous marine robot deployed to traverse
an unfamiliar environment over an extended period of time.
Such a task is often complicated by the environmental
conditions that are subject to time-varying forces such as
waves, tides or thermohaline circulation [1]-[3]. Given that
the environment is subject to change, it is often reasonable
to assume that these changes occur at a relatively slow
pace as illustrated in Fig. 1(a). These features can generate
significant uncertainty whose effects on the robot’s dynamics
are challenging to accurately predict or model [4], [5].
Consequently, the robot’s dynamics can be considered
unknown, time-varying and stochastic.

While POMDPs provide a framework for sequential
decision making under uncertainty, the introduction of
time-variability in POMDP is nontrivial. As [6] highlights,
the challenge lies in the fact that time is unidirectional and
incorporating time into state space leads to an explosion
in the size of the state space, dramatically increasing
computational complexity. To address this, we propose Time-
Varying POMDPs (TV-POMDPs) that represent transitions as
dynamic probability functions avoiding state space explosion.
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(a) Area plot depicting the variation
in wave heights (disturbance) over a
48-hour period. The data is part of a
dataset that includes various environ-
mental factors [7]. The red arrow an-
notation indicates the maximal rate
of change (Amax) in wave height.

(b) The trajectory of an Unmanned
Surface Vehicle (USV) from Sec
V-A attempting to navigate from a
starting point (green dot) to a goal
point (blue dot). The USV’s route
(red lines) visibly adjusts in response
to the changing wave heights.

Fig. 1: Time-varying environments and their effects.

The key implication is that the robot’s dynamics at any
given time depends on the current state and the temporal
context. The effects of an action taken in a particular state
may have different outcomes depending on when it is
executed. This makes it challenging to learn policies for
sequential decision making and control, since past experience
may become obsolete under time-variation. As shown by
[6], a basic Bellman backup mechanism [8] is not sufficient.
This presents a twofold challenge: accurately estimating the
time-varying dynamics of the system and effectively planning
the system’s actions in response to this dynamic uncertainty.
We propose Memory Prioritized State Estimation (MPSE),
a strategy which hinges on the understanding that in an
environment characterized by incremental change, historical
data still holds considerable value to learn the transition
function — there exists a substantial correlation between
past observations, recent observations and the current state.

A. Related Works

Classical approaches like MDPs [9] and POMDPs [10]
offer valuable foundations for modeling dynamics and
decision-making under uncertainty. However, these models
assume stationary transition probabilities, which are not
suitable for time-varying environments.

Time-Dependent MDPs (TDMDPs) [11] encode time as a
component in the state space. However, analysis [12] shows
that solving TDMDPs can be computationally intractable,
limiting real-world use. Semi-MDPs [13] allow only
transition times to vary while keeping probabilities stationary.



e-stationary MDPs [14], [15] only permit small variations
in probabilities, insufficient for dynamic environments.

An approach better suited to time-varying environments
is Time-Varying MDPs (TVMDPs) [6], that accommodates
spatial and temporal stochasticity in transitions. However,
they rely on MDPs that are known a priori. Further work
[16] extends this to learn and plan in unknown TVMDPs.
A key limitation is that these do not incorporate partial
observability, which is ubiquitous in real-world settings.

Learning in time-varying environments poses significant
challenges. Stationary RL methods [17] [18] require extensive
training episodes to converge to optimal behavior. However,
in time-varying settings, the environment continues to
evolve during training data collection, invalidating previously
learned policies [19], [20]. Online RL algorithms [21] adapt
policies continuously but naively updating estimates risks
decreased performance if past experiences become obsolete
under time-variation [22], [23].

Retaining pertinent memories is key for estimation and
planning in time-varying environments [24]. Memory-based
approaches [25], [26] can outperform Monte Carlo [27]
methods but resetting memory when dynamics change is
unsuitable for time-variation. Selective experience replay
[28] and memory attention [29] allow replaying pertinent
experiences. However, these may still replay outdated
experiences if temporal relevance is not considered.

Our work builds on these approaches by adaptively prioritiz-
ing observations based on temporal relevance, facilitating esti-
mation and planning under time-varying, partial observability.

B. Contributions

In this paper, we introduce a Time-Varying Partially Observ-
able Markov Decision Process (TV-POMDP) framework to
model time-varying stochastic dynamics. We propose Memory
Prioritized State Estimation (MPSE) to facilitate estimation
and planning within this framework. MPSE selectively
prioritizes observations based on correlation and recency. We
derive a modified Maximum Likelihood Estimate using these
prioritized samples to optimize state estimation. Additionally,
we present a planning strategy tailored to leverage the
identified time-varying transitions to improve action selection.
We demonstrate our approach in real-world and simulated
experiments, considering an autonomous marine vehicle
traversing waypoints and a robot navigating stochastic, time-
varying environments. Our results show improved state
estimation accuracy and superior planning performance,
highlighting the effectiveness of our proposed method.

II. PRELIMINARIES

A. Partially Observable Markov Decision Process

A Partially Observable Markov Decision Process (POMDP)
[10] is an extension of the classic Markov Decision Process
(MDP) that is used to model decision-making problems in
which the agent cannot directly observe the underlying state
of the system. It is represented by the tuple (S,A,Z,T,0,R,7),
which denotes state space, action space, observation space,

state transitions, observation functions, rewards, and the
discount factor, respectively.

The agent uses a belief state, which is the probability
distribution over the state space .S and is updated as the agent
interacts with the environment and receives observations.
The agent’s aim within a POMDP is to determine an optimal
policy 7*, optimizing the expected cumulative rewards.

IIT. TIME-VARYING
PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

POMDPs model the environment as a stochastic process
for optimal decision-making, assuming stationary transition
probabilities. However, real-world dynamics like those of
the autonomous marine robot that was introduced earlier
are often time-varying due to varying factors like winds
and waves. Fig. 1(b) provides an illustration of a scenario
where the robot’s transition function is subject to temporal
variations. To better model such scenarios, we propose an
extension to the traditional POMDP framework.

Our modified POMDP retains the original state and action
spaces, avoiding inflation in computational complexity.
The TV-POMDP model is represented by the tuple
(S, A, Z, Ty, O, Ry, 7, by) capturing state, action, and
observation spaces, time-varying transition and reward
functions, the observation function, the discount factor, and
the initial belief state at time to. The time-varying transition
probability, denoted by T;(s,a,s’), defines the probability of
transitioning from state s to state s’ under action a at time ¢.

Similarly, the reward function is reformulated as R;(s,a)
which gives the immediate reward for taking action a in state
s at time ¢t. The value function V, traditionally representing
the cumulative discounted return from belief state b, now
incorporates the temporal dimension — V;(b) gives the
expected future discounted reward from belief state b at time
t. The value function V;(b) is given by:

Vi(b)=max ) b(s) Rt(s,a)—i—’yzTt(s’,s,a)VtH(b’) ,

eeA s s'es

ey
where  is the discount factor and Vi (') is the value of
belief state b’ at future time ¢+1.

IV. LEARNING AND PLANNING IN A TV-POMDP

The TV-POMDP formulation captures the temporal
dynamics of the environment and acknowledges that the
same action taken in the same state can lead to different
outcomes at different points in time, i.e., non-repeatability
of outcomes. For instance, the tides might be stronger at
certain times of the day compared to others — negating the
possibility of the robot coming back to the same state and
learning from multiple runs. This feature necessitates the
development of an online learning approach.

However, online learning in the described context has its
own set of intricacies. If the transition probabilities were inde-
pendent, i.e., the observations at time t—1 do not impact the
estimate of transition probabilities for time ¢, it is meaningless
to attempt to learn the transition probability function. Thus



learning needs to leverage some structural characteristics. In
many practical domains, there exists some innate knowledge
regarding the maximal rate of environmental changes, A, 4,

Ty (s als) —Ti—1(s" a|s)| < Amax-

We leverage this underlying structure to serve as a foundation
for the agent’s learning strategy, guiding its process of
estimating and planning in such time-varying environments.
Our problem, thus, is a two-fold one:

1) Online learning: Estimate 7; in a single run by
interacting with the environment, leveraging the
knowledge of its maximal rate of change.

2) Optimal decision making: Using 73, devise an optimal
policy 7* that maximizes the future rewards.

A. Memory Prioritized State Estimation

In order to learn and estimate a transition probability func-
tion, we need to rely on information in form of observations
from the environment. Processing all past observations is
computationally expensive, so we focus on windows of recent
observations with the premise that, compared to individual
observations, these windows can provide a comprehensive
view of the time-varying dynamics at play. The size of
the time window is empirically chosen, and the method is
generally not very sensitive to the window size as long as
it is within a range that captures the temporal patterns.

1) Memory Prioritization: Not all observations carry
equal significance. Some might offer better insights into
the temporal patterns and transitions in the environment,
while others might be relatively uninformative, imperfect or
incomplete. We propose a prioritizing scheme that assigns a
weight to each sample based on its potential informativeness.
This weight is determined by a combination of factors:

1) Autocorrelation: Quantifies the degree to which
observations are dependent on each other, measuring
serial dependence. For a series of observations
z=(z1,%2,..,2n), the autocorrelation [30] at lag k is:

_ Sha—2)es—2)
\/Z?:l (2t *2)22?:1 (2t-k—2)?

We define the autocorrelation score A; by

As(z;) captures how similar the dynamics of the
environment are at time ¢ to those at time ¢; when z; was
observed. High value of A(z;) suggest that z; is perti-
nent and can provide insight for decision-making at ¢.
2) Recency: The value of an observation often diminishes
over time, captured by a recency score R,. For an
observation z; at time t;, R, is formulated as

1
Ry(z)=—, 4
()= )
where ¢ is the current time and ¢ prevents division
by zero. R, quantifies the freshness of an observation.

Higher R, means the observation is more recent and

more likely to be relevant for the current state of the
system.

3) Deviation: Observations that differ significantly from
the mean, signifying critical transitions.

Dy(i)=1z;—Z]|. 4)

Here, D, quantifies the extent to which an observation
z; deviates from the mean Z; within its time window.
While higher D, values can indicate both informative
observations and outliers, the inclusion of autocorrela-
tion score reduces the potential impact of outliers, allow-
ing Dy to be less influential on the overall estimation.
Each observation z; is assigned a combined weight w;,
which is a weighted sum of these factors:

Wz; :waAS(Zi)+w7'Rs(Zi)+wst(Zi)> (6)

where w,, w, and wy are the weights that represent the
relative importance of autocorrelation, recency and deviation.

2) Estimation of Time-Varying Transition Probability
Function: To estimate the time-varying transition probability
function, we use a weighted likelihood approach informed
by our prioritized memory scheme. We define a likelihood
function [16], L(T}|oo.7,a0.7,wo.7), that encapsulates the
probability of observing a particular sequence of observations
z = (20,21,...,27) within a window, given a sequence of
actions a=(agp,a1,...,a7) and the model T;.

-
L(Ty|z0.7,00.7 wo.T) = H [Probp(zt |a ,wt)] )|
t=0
Prob s (2¢|as,w;) represents the probability of observing z;
given action a; and the model, adjusted by the weight wy.
To solve for T3, we frame it as a constrained optimization
problem with The objective of maximizing the log-likelihood
function, subject to maximal rate of change constraint A.
The optimization problem is then:

Ty(0,a,0') =argmax log L(T¢|oo.7,a0.7,wo:7)

\Tt(ol,a\o) _,-thl(olva|0)| S Amax'

The work in [16] shows that this is a convex problem.
To solve this problem efficiently in real-time, we employ
CVXOPT [31], an optimization library.

3) Policy Optimization and Planning: Our ultimate
objective is to devise an optimal policy using the estimated
transition function, Tt(s, a, s'), that maximizes expected
long-term rewards. To reflect the system’s dynamic nature, we
adjust the Bayesian belief state update with the estimated 73:

bt+1(s/):UQ(Zt|5:5ﬂt)ZTt(S;zat'st)bt(S)' (®)

seS
Here, b(s’) is the belief state at time t41, Q(z|s',a) is the
likelihood of observing z after taking action a and transition-
ing to state s, and 7 is a normalizing constant to ensure a
valid probability distribution. Optimal policy, 7(b), leverages
expected V;(b) (Equation 1) to maximize expected rewards:

m(b)= argr;leaj(‘z:th (s,0)Ty(s,a,8)b(s)+~Vi (D). (9)

subject to



(a) Our approach (MPSE):
# waypoints followed: 117

(b) DT-POMDP (classical estima-
tion): # waypoints followed: 103

(c) TA-DESPOT:
# waypoints followed: 99

(d) TA-PBVI:
# waypoints followed: 99

Fig. 2: The figures display the simulation environment and the waypoints tracked by the algorithms within a TV-POMDP
(Scenario 2 with A, =0.02). If the robot’s estimate from a waypoint exceeds 3m, it is marked with x indicating notable
deviations. The purple lines indicate the USV’s trajectory, and the black lines are the desired 150-waypoint trajectory.

The problem’s complexity in Equation 9 is tied to the
dimensions of the state and action spaces, the real-time
optimized transition function T} (s,a,s’) significantly reduces
the computational burden. Commonly used algorithms such
as Policy Iteration is adept at solving this problem efficiently.

V. EXPERIMENTS AND DISCUSSIONS

This section evaluates our algorithm’s performance in TV-
POMDPs through two cases: a simulated marine environment
with an USV following waypoints, and a robot in a hardware
experiment navigating the shortest path to a destination.

A. Simulated Marine Experiment

We simulate an USV navigating 150 waypoints, with the
ultimate goal of reaching a final waypoint. The simulation is
carried out in Gazebo [32] with ROS2 [33] as the middleware.
Adopted from [34], the simulation models sophisticated
water-vessel interactions through hydrodynamics plugin and
utilizes the wavefield plugin [35] to reproduce effects of
winds and waves.

o Action Space: The USV, based on [36], is modeled as
a single engine vessel with action space A defined by:

— Thrust €[0,35]N, with discrete increments of 5N
— Thrust Direction € [—90°,90°], with 10° increments.

« Partial Observations: The USV receives noisy position
estimates as observations, with noise distributed by
~ N(0,0%) where 0 = 1.5m was adjusted to reflect
USV GPS accuracy levels [37].

+10, per waypoint reached in the right

order within a radius of 3m

 Reward: upon reaching the final goal

+50,
0, otherwise
e Model Uncertainty: Hydrodynamic disturbances
introduce time-varying transitions in simulation.
Specifically, if a disturbance occurs, the trajectory
deviates by an angle 0 ~A\(0,10%),0 € [-10°,10°].
1) Baselines: The standard POMDP model does not
natively handle time-varying dynamics, limiting applicability.
We introduce modifications to enable comparisons.

We use classical estimation techniques with the Discrete-
Time POMDP (DT-POMDP), which adds discrete time
elements to create time-layered state structures. However, DT-
POMDP has fixed horizons and discretization limitations. We
extend Point-Based Value Iteration (PBVI) [38], a point-based
POMDP planning method, to Time-Aware PBVI (TA-PBVI)
by incorporating a time dimension into the belief points.
We also extend Determinized Sparse Partially Observable
Tree (DESPOT) [39], a belief tree planning method, to
Time-Aware DESPOT (TA-DESPOT) by incorporating time
steps as state variables during tree expansion to handle time.

2) Simulation results: We evaluate the performance of
the algorithms in two distinct scenarios:

Scenario 1 - Constant Environmental Conditions: We
employ the wavefield plugin to simulate a constant wind
speed of 5m/s, thereby fixing the transition probability at
0.7 — essentially operating in a standard POMDP. For any
action, the USV transitions to the expected next state with
70% probability. With 30% probability, a disturbance occurs,
deviating the trajectory as described in V-A. This simplified
scenario provides a performance reference before introducing
time-varying disturbances in Scenario 2.

Scenario 2 - Adding time-varying disturbances: We use
the hydrodynamics plugin and the wavefield plugin to
introduce a time-varying transition function, 7y = 1—1¢/20.
This function simulates increasing currents over time that
hinder the USV’s motion, causing more stochastic transitions
[2]. The USV’s trajectory deviates by a probability of ¢/20
as described in V-A. The linear current growth matches
real-world acceleration of currents in certain climates [40].

Discussions: As shown in the results of Scenario 1
(Table I, the baselines are well-established for solving
standard POMDPs. TA-DESPOT performs best due to its
exhaustive look-ahead search, while MPSE closely mirrors
the performance. As shown in our simulations (Fig. 2) and
the results (Table 1), the time-varying dynamics in Scenario 2
present significant challenges for established baselines despite
using time as a variable in their models. Unlike our approach,
the baselines do not include mechanisms to prioritize
historical samples alongside new data. This leads to their core




— TurtleBot Trajectory
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Safe Corridor safe Corridor

(a) MPSE (b) DT-POMDP

— TurtleBot Trajectory
Safe Corridor

— TurtleBot Trajectory

m— Safe Corridor

(c) TA-DESPOT (d) TA-PBVI

Fig. 3: The figures represent the hardware setup and trajectories for MPSE and baselines in a TV-POMDP (Scenario 3 with
Amax =0.03). Cyan corridor represents the map limits (H,g) and red lines represent TurtleBot’s trajectories. The background
consists of two different terrains: the white areas depict rougher cemented terrain, while the darker areas show smoother
terrain. The roughness variation between these surfaces is substantial enough to impact the TurtleBot’s mobility.

Constant Transition Tfn.le-Varymg' .
. Transition Probability
Probability
T =07 Ti=1-t/20
for(;Zt.<20 for 0<¢<20
- = Amax =0.02
# waypoints # waypoints
MAE followed MAE followed
MPSE 0.16626 121 0.22820 117
DT-POMDP | 0.19505 110 0.25921 103
TA-DESPOT | 0.14221 129 0.27003 99
TA-PBVI 0.16088 123 0.29612 99

TABLE I: Comparison of mean absolute error (MAE) and
the number of waypoints followed for Scenarios 1 and 2. The
USV transitions to the next expected state with probability
T} and deviates with probability 1—T}; as described in V-A.

algorithms’ inability to adapt effectively to evolving, uncertain
dynamics, highlighting a critical limitation: a sole reliance
on the most recent observations is not adequate for accurate
planning in time-varying POMDPs. On the contrary, MPSE’s
selective combination of past and present information enables
more effective adaptation to unknown, evolving dynamics.

Without mechanisms to prioritize samples from memory
alongside new data, it becomes difficult for their core
algorithms to adapt to the unknown, evolving dynamics.
Fundamentally, this underscores a key limitation of relying
solely on the most recent observations to accurately plan
in a time-varying POMDPs. MPSE’s superior performance
highlights the value of this mechanism for settings with
unknown, continuously changing dynamics.

B. Hardware Ground Vehicle Experiment

To further evaluate the capability of our algorithm in
real-world settings, we conduct physical experiments using
a TurtleBot Burger navigating a rough terrain. The robot
is tasked with navigating from a designated start point to
a predefined goal location in the shortest possible route
while ensuring that it does not go off-road. The TurtleBot is
equipped with an onboard computer, u-blox ZED FOP GPS
module, and LIDAR for SLAM [41]. The agent has access
to the safe coridor (Hg,g) through an occupancy grid (H),
generated using SLAM. Hgy defines the shortest, safest
corridor to the objective. It moves at a maximum speed of

0.22 m/s, receiving 10 Hz GPS observations. We leverage
ROS to interface the sensors with the onboard computer.

Ideal vs Torque due to adversarial controller

Fig. 4: The red line represents the robot’s maximum torque,
while the blue line illustrates the effect of the introduced
adversarial controller. The brown line depicts the resulting
slippage on the robot’s wheels. To empirically validate these
effects on the model’s transition probabilities, we conducted
trials with and without the adversarial controller. By tracking
the robot’s GPS transitions and comparing against the ground
truth without adversarial control, we tuned the model to
account for the torque and slippage impact on transitions.

o Action Space: The robot’s movements are defined by its

steering angle, captured in the discretized action space:

— Steering Angle (0): 0 €[—¢,y] in increments of 5°,

where ¢ €[—90,90] is the maximum steering angle.

« Partial Observations: At each timestep, noisy GNSS

provides the position estimate modeled as signal strength

SS1=f (th) where d; is the true position plus Gaussian

noise e~N(0,02) with horizontal error o =1.5m [42].

o Reward Function: The reward R(h) at any point h
in the occupancy grid H is defined as follows:

-1, if h€ Hyg,
R(h): _10, if heHunsafe,
+5, on reaching the objective waypoint

e Model Uncertainty: To emulate time-varying envi-
ronmental conditions like increasing rain, which could
cause slip, we implement an adversarial controller that
modulates the wheel torque — simulating the varying
levels of wheel-ground friction, mimicking the effect of
slip on the state transitions of the robot. Fig. 4 shows the
effects of this artificially induced, time-varying slip. Con-
sequently, the robot’s trajectory deviates within an angle
range ( ~N(0,0%) where ¢ €[—10°,10°] and o=5°.



Time-Varying Sli Time-Varying sli
Constant Sllp T,=0.9 Xye—gO.OS{) ‘1/(1+e—(tz5)g);02tglo
Ti=0.9 for 0<¢<20 for 0<£<20 and Amag =002 | 117 ¢~(t-102/2,10 << 20
MAE Cost incurred MAE Cost incurred MAE Cost incurred
MPSE 0.09652 -34 0.14201 -45 0.18195 -61
DT-POMDP 0.11505 -56 0.18569 -62 0.30395 -84
TA-DESPOT 0.07221 -31 0.23723 -81 0.39528 -86
TA-PBVI 0.09988 -43 0.27453 -96 0.41741 -102

TABLE II: Comparison of total error and total cost incurred for different scenarios. The TurtleBot transitions to next
expected state with the defined probability 7; and deviates with a probability 1—T; as described in V-B.

—— Average Error: MPSE
—— Average Error: TA-DESPOT
—— Average Error: TA-PBVI

—— Average Error: DT-POMDP
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Fig. 5: Subfigures (a) and (b) display transition function changes in the first and second mission halves, respectively, while
(c) shows maximal error over time. To ensure valid probabilities, the estimated transition probabilities are clipped between
teal lines. The results depicted are after applying this clipping constraint. Although clipping alters individual probability
values, it does not significantly impact the overall trends and comparative results. The key conclusions remain valid.

1) Hardware results: The results presented in Table II
quantify the total error and the cost incurred when navigating
from the start to goal in three different scenarios. Scenario
setting for 1 and 2 remain consistent with the simulation
settings. As shown, the results for the first two scenarios
roughly align with the simulation results discussed earlier.

Scenario 3: Adaptive Transition Functions: We challenge
our approach’s adaptability by switching the transition
functions midway through the experiment — emulating
abrupt change in terrain. The robot transitions to the next
expected state following Ty () =1/(14e~(*#=5)) for the first
10s, after which it switches to Tio(t) — e~ (t=100?/2 for the
next 10s. Fig. 3 presents the trajectories followed in this
scenario and Fig. 5 presents the estimated transition function.

Discussions: The third scenario significantly challenges
all the algorithms. DT-POMDP with classical estimation
struggled due to inability to swiftly adjust, a limitation in
non-stationary settings [43]. TA-PBVI and TA-DESPOT were
constrained by their dependence on preset beliefs/trees that
are difficult to update. This intrinsic design choice means
that when the environment changes unexpectedly, they have
to heavily recompute or adjust these structures. This process
is computationally intensive and time-consuming, leading
to less agile responses. As observed in Fig. 5, TA-DESPOT
responded fastest owing to its flexible tree [39]. However,
its convergence lagged as optimizing the tree under altered
conditions is difficult [27]. MPSE took time to balance
retaining prior learning versus acquiring new samples, a

tradeoff in lifelong learning [44]. But after this adjustment
period, MPSE outperformed all methods in convergence
speed through continuous adaptation. By continuously
balancing learning with selective forgetting, MPSE provides
robust performance despite time-varying transitions.

VI. CONCLUSION

This work introduced Time-Varying Partially Observable
Markov Decision Processes (TV-POMDPs) to address the
challenges of decision-making in time-varying environments.
To facilitate effective planning in such environments, we
proposed a novel methodology called Memory Prioritized
State Estimation (MPSE). Motivated by the need to manage
the uncertainty arising from time-varying dynamics and partial
observability, MPSE selectively prioritizes observations based
on their information content, thereby enhancing the accuracy
of estimations and ensuring computationally efficient planning.
An associated planning strategy was also presented, tailored
specifically to exploit the modeled time-varying transitions.
We validated our approach through real-world and simulated
experiments demonstrating the effectiveness of modeling the
relevant systems as TV-POMDPs and utilizing MPSE for more
accurate decision-making. Our planning strategy outperformed
multiple baselines in leveraging the time-varying nature of
the environment for optimized action selection. Our proposed
work successfully integrates capabilities to plan in stochastic,
partially observabile, and time-varying environments, over-
coming limitations inherent in previous approaches.
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