
Explorative Probabilistic Planning with Unknown Target Locations

Farhad Nawaz1 and Melkior Ornik2

Abstract— Motion planning in an unknown environment
demands synthesis of an optimal control policy that balances
between exploration and exploitation. In this paper, we present
the environment as a labeled graph where the labels of states
are initially unknown, and consider a motion planning objective
to fulfill a generalized reach-avoid specification given on these
labels in minimum time. By describing the record of visited
labels as an automaton, we translate our problem to a Canadian
traveler problem on an adapted state space. We propose a
strategy that enables the agent to perform its task by exploiting
possible a priori knowledge about the labels and the envi-
ronment and incrementally revealing the environment online.
Namely, the agent plans, follows, and replans the optimal path
by assigning edge weights that balance between exploration and
exploitation, given the current knowledge of the environment.
We illustrate our strategy on the setting of an agent operating
on a two-dimensional grid environment.

I. INTRODUCTION

This paper tackles the classical problem of reach-avoid
planning: construction of an optimal path to reach a target
while avoiding obstacles [1], [2]. A significant amount of
recent research, motivated by autonomous missions in remote
or hostile areas, focuses on solving it in uncertain and
dynamic environments [3], [4]. Our paper aims to solve a
generalization of such a problem — encoded as a linear
temporal logic (LTL) specification [5] — in an environment
where the agent’s dynamics are known and simple, but the
locations of the targets and obstacles are unknown until an
agent reaches their vicinity. Such a problem naturally arises
in scientific or military missions where an area of interest
has not been previously mapped [6].

The problem considered in our work draws from two areas
of prior research: (i) automated synthesis of policies for
high-level mission specifications and (ii) optimal planning in
uncertain environments. Various tools such as NuSMV [7]
and Spin [8] have been developed in the formal verification
community to check whether an agent’s path satisfies a
LTL specification. Though past work [9], [10] utilizes LTL
specifications for path planning, it focuses on a priori known
state space, solely verifying whether a given path satisfies a
specification, and not operating in an uncertain environment.

In the direction of planning in uncertain environments, a
common approach [11] is to produce online planning policies

∗ This work was supported by an Early Stage Innovations grant
from NASA’s Space Technology Research Grants Program, grant no.
80NSSC19K0209.

1 F. Nawaz is with the Department of Aerospace Engineering and
the Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA. Email: fns3@illinois.edu

2 M. Ornik is with the Department of Aerospace Engineering and
the Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA. Email: mornik@illinois.edu

which combine exploration — learning more about the
environment for the sake of success later in the mission —
with exploitation, i.e., taking actions that seem to contribute
towards completing the mission. With notable exceptions of
[12] and [13], such work primarily focuses on exploring
the environment to learn unknown dynamics, often in a
Markov decision process environment [11], [14]. However,
our work seeks to locate unknown states of interest, possibly
under some prior structural information about their relative
locations (tactical formation of military units [15]).

The setting of our work is most similar to [12] and [13];
the latter work considers a reach specification, but just for
one particular environment modeling the game of Battleship,
where the agent always takes greedy actions for mission
completion with no active exploration. The former work
jointly considers progress towards an LTL specification and
motion of the agent in a product transition system similar to
our own, but is not able to make use of any prior knowledge
about the environment. The planning procedure in [12]
consists of multiple motion phases used alternately for ex-
ploration and exploitation. We use possible prior information
about the environment to interpret the resulting problem as an
instance of a Canadian Traveler Problem (CTP), and utilize
a more sophisticated planning procedure that keeps track
of the probability distribution on all possible environment
configurations and seeks to optimally concurrently explore
the environment and progress towards mission completion.

As in [12], our work rests on interpreting an LTL specifi-
cation as an automaton [16]. The unknown locations of the
states of interest, interpreted as an unknown labeling function
of the states, thus result in unknown automaton transitions.
We then use tools from automaton theory [16] to construct
a product transition system, with deterministic but a priori
partly unknown transitions, representing the LTL specifica-
tion as well as the agent’s environment, where transitions are
deterministic. Unlike the setting of [12], allowing for a prior
distribution on possible labelings now results in an instance
of a CTP [17], with additional structure stemming from the
construction of an underlying graph as a product space of an
automaton and a transition system. The specific structure of
the problem allows us to propose a novel approach of solving
it tailored to this structure, as opposed to generic heuristic
solutions to the CTP [18], [19]. Our approach relies on
assigning weights to each possibly existing edge depending
on their value for the agent’s exploration and exploitation,
subsequently planning and replanning — upon gaining new
information about the environment — an optimal path to-
wards completing the mission. We first proceed to define the
preliminary mathematical concepts used in this paper.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works



II. PRELIMINARIES AND NOTATION

We introduce some definitions to formally describe the en-
vironment and objectives considered in the paper. Through-
out the paper, notation 2X indicates all subsets of a set X .

A. Transition System

A transition system [16] describes the motion of an agent
operating in a finite state space. We provide two equivalent
definitions, allowing us to switch seamlessly between a
formal transition system [12] and a labeled directed graph.

Definition 1. A deterministic finite transition system is a
tuple T = (S, s0, Act,∆, AP, L), where S is a finite set of
states, s0 ∈ S is the initial state, Act is a finite set of actions,
∆ ⊆ S × Act × S is the set of transitions, AP is a set of
finite atomic propositions (labels), and L : S → 2AP is a
labeling function.

We assume that all actions in Act are available at all states
s ∈ S. In general, we could define Act : S → 2A, where A
is the set of all actions that are available at some state in S.

A transition relation from state s to s′ with action α can be
written as s α−→ s′ or (s, α, s′) ∈ ∆. The labeling function L
assigns each state a set of atomic propositions, L(s), which
are considered to be true in that state. A finite path of a
transition system is a finite sequence π = s0s1...sn, where
sk

αk−−→ sk+1 ∀ 0 ≤ k ≤ n − 1, αk ∈ Act. The finite
path π generates a finite trace trace(π) = l0l1...ln, where
lk = L(sk) ∀ 0 ≤ k ≤ n.

We define the labeled directed graph for the deterministic
transition system T as G = (S,∆E , AP, L), with vertices
S and edges ∆E ⊆ S × S, where L is the same labeling
function as in T . The labels describe regions of interest in
the environment. A set of neighbouring vertices for a vertex
s ∈ S is defined as S′s = {s′ ∈ S | (s, s′) ∈ ∆E}. We now
proceed to formalize the objective of the agent.

B. Linear Temporal Logic

Linear temporal logic (LTL) [16] is a formal language
used to express high level task specifications for the agent to
satisfy. An LTL specification is a formula defined over a set
of atomic propositions, with logical connectors and temporal
modal operators. The atomic propositions take Boolean val-
ues, either true or false. The logical connectors come from
extending propositional logic, such as negation, disjunction,
and conjunction, denoted by ¬, ∨, and ∧, respectively. The
temporal modal operators describe modalities related to time.
The basic operators are next, until, eventually, and always,
denoted by ©, U , ♦, and �, respectively. For instance, the
specification — which will become our running example —
of “eventually visit T1 and T2 while avoiding O” can be
translated to the LTL specification: ♦T1 ∧ ♦T2 ∧�¬O.

Since the labels of states in a transition system are sets of
atomic propositions, the meaning of a path from Section II-A
satisfying an LTL formula ϕ is natural. Formally, we write
trace(π) |= ϕ, which means that ϕ evaluates as true with
respect to trace(π) [16]. We proceed to encode an agent’s
progress at its specification using the notion of an automaton.

C. Automaton

A deterministic finite automaton gives a formal way of
describing the “history” of a path with respect to an LTL
specification that it satisfies. The automaton for our running
example is given in Fig. 1a. Every LTL formula defined over
a finite set of atomic propositions can be described by a
deterministic finite automaton [16].

Definition 2. A deterministic finite automaton (DFA) is a
tuple A = (Q, q0,Σ, δ, F ), where Q is a finite set of states,
q0 ∈ Q is the initial state, F ⊆ Q is a set of accepting
states, Σ is the input alphabet, and δ : Q × Σ → Q is the
transition function.

We define a transition in an automaton as q
σ−→ q′ if

q′ = δ(q, σ), where σ ∈ Σ is an atomic proposition. All
transitions which violate the LTL formula are not present
in the automaton, as in Fig. 1a. An accepting run πA of
a DFA on a finite sequence of sets of atomic propositions
σ0σ1...σn over Σ is a sequence of states q0q1...qn+1 such that
qn+1 ∈ F , and qk+1 = δ(qk, σk) ∀ 0 ≤ k ≤ n. Combining
these notions with Section II-A, we use an automaton to
describe an agent’s satisfaction of its LTL specification. The
transition relation δ describes the state transitions in A as the
agent transitions from one state in S to another, with a new
set of labels. Hence, each set L(s) in T is an input Σ for A.
As in Fig. 1a, a transition q0 → q1 at time t indicates that
T1 ∈ lt, with T1 /∈ lt ∀ t < t and T2, O /∈ lt. It thus makes
natural sense to consider an agent’s motion in the transition
system T and its “motion” in the DFA A in parallel.

D. Product Transition System

A product transition system [16] combines a transition
system with an automaton.

Definition 3. Given a deterministic finite transition system
T = (S, s0, Act,∆, AP, L) and a DFA A = (Q, q0,Σ, δ, F ),
their product transition system T ⊗ A is defined as the fol-
lowing transition system: T ⊗ A = (Qp, Act,∆p, Qp0, Fp),
where, Qp = S × Q is the set of states, ∆p ⊆ Qp × Qp
where (s, q) → (s′, q′) if s α−→ s′ and q′ = δ(q, L(s′)),
Qp0 = {(s0, q)|q = δ (q0, L(s0))} is the set of initial states,
Fp = S × F is the set of final states.

q0

q1

q2

q3
T 1
∧
¬
T 2
∧
¬
O

T1 ∧ T2 ∧ ¬O

¬T1 ∧ ¬T2 ∧ ¬O

¬T
1 ∧

T
2 ∧

¬O

¬T2 ∧ ¬O

¬T1 ∧ ¬O

¬O

T
2
∧
¬

O

T 1
∧
¬
O

(a) The automaton with initial
state q0, and accepting state q3.

(b) A possible labeling function
l ∈ L, on a grid-world.

Fig. 1: Automaton and a possible labeling function for our
running example: ♦T1 ∧ ♦T2 ∧�¬O.



Qp0 is a set of pairs of (i) the initial state of T and (ii) the
state of A which is connected to the initial state of A, with
the input as the label of the initial state of T . The transition
relation ∆p defines that a transition between the states of T
and the states of A exists if and only if (i) there exists a
valid transition between the current and the successor state
in T and (ii) label of the successor state in T is in the input
alphabet for a valid transition in A.

Analogous to a transition system T , we can interpret a
product transition system as a directed graph. Having defined
the relevant preliminaries, we proceed to formally define the
optimal planning problem with unknown label locations.

III. PROBLEM FORMULATION

We consider an agent operating on a labeled directed graph
(deterministic transition system) G = (S,∆E , AP, L). At
every time step t, the agent transitions from its current state
st to a state st+1 such that (st, st+1) ∈ ∆E . To formally pose
our problem, we make the following assumptions about the
agent’s knowledge as it moves on G:
1) graph vertices and edges are a priori known to the agent,
2) set AP of possible labels is a priori known to the agent,

but not the labeling function L
3) the agent knows its state st at every time t,
4) at time t, the agent can see (and memorize for future use)

the labels of state st and all its neighboring states s′t.
While the agent does not know exactly the labeling function
L, it may have some prior information about L. In other
words, it has a probability distribution P : L → [0, 1] over
the finite set L = {L : S → 2AP }. If there is no knowledge
whatsoever, we may consider P to be a uniform distribution.

We consider the following problem statement.

Problem 1. Let an agent operate on a labeled directed graph
G, with AP = {Tij}∪ {Oi}, where 1 ≤ i ≤ N, 1 ≤ j ≤ pi,
N ≥ 1, and pi are positive integers. Under assumptions 1)-
4), find a path π which satisfies a given LTL specification

ϕ = ∨Ni=1

((
∧pij=1♦Tij

)
∧ (�¬Oi)

)
(1)

in minimum time, where Tij are the labels of the target
locations, and Oi are the labels of the obstacle locations.

In less formal terms, the LTL specification (1) requires
the agent to satisfy at least one of the N specifications ϕi =((
∧pij=1♦Tij

)
∧ (�¬Oi)

)
. Each specification ϕi is a reach-

avoid problem [2], where the agent should eventually visit at
least one state labeled with Tij for every j, while avoiding
states labeled with Oi. Our method can handle more general
co-safe LTL specifications; we present the problem in the
current fashion because of its obvious motivational scenario
of seeking targets with unknown locations.

Note that our running example in Fig. 1 is an instance of
the specification (1) for N = 1 and pi = 2. We introduce a
grid-world environment given in Fig. 1b as the transition sys-
tem for our running example. A prior probability distribution
on L may come, for instance, from the knowledge that the
pairwise distance between the targets and obstacle is always
less than 2 units: any labeling function L that do not satisfy

such a property has probability 0, while we consider all other
labeling functions to be equally probable.

Throughout the paper, we assume that there indeed exists
a path π satisfying ϕ. Nonetheless, given that the agent
does not a priori know the labels of states, it is naturally
impossible for it to immediately find a π. However, given
assumptions 3) and 4), the agent can “explore” the environ-
ment and continually re-plan its path during its mission. Our
approach is to adapt the methodology of previous work [11],
[14] on optimal planning in unknown environments and try
to find an ideal mixture of active exploration — movement
for the sake of finding out more about the environment
— and progress towards mission completion (exploitation),
given the current knowledge about the environment. Our
approach differs from [12] in a similar setting; [12] explicitly
switches between phases of exploration and exploitation, but
not attempting to explore and exploit at the same time might
not be maximally time-effective, and [12] does not make use
of possible prior knowledge about L.

With notable exception of [12], existing work on planning
for unknown environments largely considers unknown sys-
tem dynamics rather than unknown target locations. The first
step of our approach is to consider the motion on a product
transition system as described in Section II-D, instead of
the previously considered class of problems, which considers
motion solely on the transition system T .

IV. CANADIAN TRAVELER PROBLEM

We begin by constructing an automaton A for the spec-
ification ϕ, as in Section II-C. Consequently, the product
transition system T ⊗ A is constructed as in Section II-D.

Let us consider the transitions existing in T ⊗A. Each of
those transitions is a pair of a fully known state transition
st → st+1 in T and a state transition in A. As described
in Section II-C, the state transition in A depends on the
labels of the subsequent element of the agent’s path, i.e.,
on L(st+1). Thus, the agent’s path in T ⊗ A depends on
the labeling function L, which, by assumption 2), is a priori
unknown. Since transitions in T ⊗ A are uniquely defined
by the choice of labeling L, the probability distribution P
described in Section III yields a prior probability distribution
on the existence of each possible transition in T ⊗A. By an
abuse of notation, we define P (δp) as the prior probability
that the transition δp exists in T ⊗ A, where δp ∈ ∆p.

We emphasize that the agent’s motion in T ⊗A, given its
actions, is deterministic, i.e., for a given action α ∈ Act and
state (st, qt), the agent will always transition to the same
state in T ⊗ A. The stochastic element of this problem is
solely over whether a particular transition (i.e., an edge in the
product graph) exists or not. We thus proved the following:

Theorem 1. Problem 1 is equivalent to a shortest path
problem on T ⊗ A with edges whose existence is a priori
uncertain.

The shortest path problem on a finite deterministic transi-
tion system (directed graph) is a Canadian traveler problem
(CTP) [17]. The CTP asks to find the shortest path on



a directed graph G = (V,E) with vertices V and edges
E, where v0 ∈ V is the initial vertex, VF ⊆ V is a
set of final vertices, and E is unknown, but there exists a
prior probability distribution over the set E of possible edge
configurations, with E ∈ E .

Finding an optimal policy that yields the expected shortest
path for the CTP, is a provably #P-hard problem [17], and
heuristic methods for finding a sub-optimal solution are used
instead [19]. In addition to computational issues, a general
approach to the CTP might not be useful for our problem,
in which graph G is constructed as the product of T and
A, and thus the edges have a particular sparse structure. In
the subsequent section, we propose our own approach to the
CTP conscious of the special structure of our problem, and
compare it to a standard approach of [19].

V. EXPLORATION AND EXPLOITATION

Interpreting assumption 4) in terms of the graph G =
(V,E) derived from T ⊗A ensures that, at every time step,
the agent is aware of all the edges e ∈ E which are neighbors
of its current state. As the agent visits more states in T , i.e.,
more vertices in G, it changes its probability distribution over
E by removing the sets which do not fit the information about
existence of edges that it collected until then. To solve the
CTP, we thus propose the following approach: we compute
the best path according to some metric of optimality with
a particular assumed set E′ of existing edges, and proceed
along that path until either we see that E′ 6= E, or the
agent completes its mission. If the model E′ 6= E, we then
build a new model E′ consistent with current information
about E, re-plan for the new best path, and proceed. Our
metric of optimality aims to balance between exploration —
finding out more about the environment — and exploitation
— moving in a way that seems to help with completing the
mission, given the current knowledge about the environment.

We note that the approach of replanning once a model of
existing edges turns out to be incorrect is the same as in [19]
for the general CTP; however, as we will discuss later, our
two approaches differ significantly in the metric of quality
that we assign to a path. A similar method is used in [13], but
does not explicitly pose the original problem as a CTP and
uses a significantly different metric of quality. The technique
of removing impossible edge configurations is used in [18],
where two paths are computed at every iteration, one each
for exploration and exploitation, while we compute only one
path based on exploration and exploitation weights.

Let us briefly describe our method presented in Algo-
rithm 1. Lines 1–5 run at the beginning of agent’s mission
convert the state space S, transition edges ∆E , and automa-
ton A derived from the specification ϕ into a graph with
partly unknown edges E; they use the distribution P over the
labeling function L to construct a probability distribution P̂
over E. Then, a model — graph G — is constructed on which
a conventional path planning technique can be implemented.

Lines 6–10 utilize Path-Plan, to be defined later, as a
metric of path quality, to find the best path on G to a
set of final vertices Vf . Lines 11–16 describe the agent’s

Algorithm 1 Path Planning with Unknown Target Locations

1: procedure INITIALIZATION(S, s0,∆E , AP, P, ϕ)
2: Construct Automaton A for LTL formula ϕ
3: Construct (V, v0, Vf ) for T ⊗ A
4: Construct a distribution P̂ for E from T ⊗ A
5: G ← Deterministic-Graph(V, P̂ )

6: procedure SEARCH-PATH(G)
7: repeat
8: P ← min(P,Path-Plan(G, v0, Vf ))
9: v0 ← TRAVERSE-PATH(P)

10: until ϕ is satisfied
11: procedure TRAVERSE-PATH(P)
12: repeat
13: Visit next vertex v in P
14: P̂ ← Update-Possible-Edges(P̂ )
15: G ← Deterministic-Graph(V, P̂ )
16: until G changes or end of path

traversal of the environment. At each time step, the agent
collects new information about state labels, and changes the
possible set of graphs to derive a new model graph. If this
model differs from the previously computed model, traversal
stops, and the path is re-planned in line 8. As long as the
mission is not satisfied, the agent keeps visiting new states,
until the environment becomes entirely known. Algorithm 1
thus trivially ensures the following result, paralleling the one
obtained in [12] using a different planning method.

Theorem 2. Algorithm 1 results in the agent eventually
satisfying its specification, if the specification is satisfiable.

We now proceed to describe how functions Deterministic-
Graph and Path-Plan construct a graph G and find an
optimal path on it, respectively.

Our first step is to distill a probability distribution over
the set of possible graphs into a single “guessed” graph
G. Naturally, G will likely not equal the correct graph G.
Nonetheless, replacing a set of graphs with a single graph
allows us to efficiently compute a best path on such a graph.

We construct the graph G as follows. Since vertices V of
G are known, those remain the vertices of G. The edges of
G are those that have non-zero probability of existence.

We proceed with path planning on G. We assign weight
w(e) to each edge e ∈ E of G as follows:

w(e) = w1(e) + w2(e), (2)

where w1 and w2 are exploration and exploitation weights,
respectively. An edge whose traversal may reduce the un-
certainty about G will have a low exploration weight. An
edge whose traversal will seemingly push the agent towards
a vertex in Vf will have a low exploitation weight.

Assuming e as an edge from v1 ∈ V to v2 ∈ V , we define

w1(e) = 1 + γ

∑
v′∈V ′

v2

(
1− 1

(P (v2,v′)−0.5)2+1

)
#(V ′v2)

, (3)



where γ is a tunable parameter. The set of neighboring
vertices for v2 is V ′v2 , and #(V ′v2) is the cardinality of V ′v2 .

If v2 has uncertain adjacent edges, then w1(e) is small.
The existence of each edge e′ = (v2, v

′) is Bernoulli dis-
tributed with probability P(e′). The uncertainty is maximum
when P(e′) = 0.5, with the lowest value of 1− 1/((P(e′)−
0.5)2 + 1), and uncertainty is minimum when P(e′) = 0 or
1, with the highest value of 1− 1/((P(e′)− 0.5)2 + 1).

To define the exploitation weight, we introduce the follow-
ing assumptions, and notation based on our LTL formula (1):

i) equation (1) can be modified to repeat some targets (Tij)
or obstacles (Oi) among the N specifications,

ii) a target label in one specification i cannot be an obstacle
label in another specification j, and vice-versa,

iii) qv is the automaton “coordinate” of vertex v in G,
iv) O(qv) and T (qv) are the total number of visited obsta-

cles and targets, respectively, in automaton state qv ,
v) nO and nT are the number of obstacles and targets,

respectively, visited by the agent until the current time.
We define w2(e) as follows:

w2(e) =


1 if qv2 = qv1
1 + (1 + nO)P(e) if O(qv2) = O(qv1) + 1
(1−P(e))
1+nT

if T (qv2) = T (qv1) + 1
(4)

From assumption ii) above, each state in S is either not
labeled, a target, or an obstacle. Hence, a state transition will
either increase the number of visited obstacles or targets by
1, or have both of those numbers remain same. Thus, the
piecewise definition of (4) covers the three possible cases,
assuming a state in the transition system can have only
one label, or none. We could accordingly add additional
conditions to w2(e) if a state can have multiple labels.

If a state transition does not lead to any change in visited
labels, the weight is 1. If vertex v2 corresponds to an
increase in obstacle count from v1, we increase the weight
of e, making it less desirable, depending on the number of
obstacles already visited, and the probability of the edge
actually existing. If e leads to a vertex with an increase in
target count, we analogously reduce the weight of e, making
it more desirable.

Function Path-Plan now simply implements a shortest
path algorithm (Bellman-Ford [20]) on a graph G with
weights w defined in (2), (3) and (4). We proceed to validate
this approach on a classical grid-world environment.

VI. NUMERICAL EXAMPLE

We consider an agent that operates on a 8 × 8 grid-
world. Some cells are not labeled; those that are la-
beled have exactly one label from the set AP =
{T1, T21, T22, O11, O12, O21, O22}. It is a priori known that
there is one cell with each label: cells labeled with O(·)
are obstacles, while T(·) are targets. The agent can move
to the north, west, south, or east of its current cell, except,
at the edges of the environment. Its knowledge about the
environment satisfies assumptions 1)-4) above Problem 1 and
property ii) before (4).

The actual labeled environment which is unknown to the
agent is shown in Fig. 2a. The agent has the following
structural information about possible label configurations:
• the obstacles always lie on the corners of a 4×4 square,
• O11 is the top left corner of the square, O21 top right,
O22 bottom right, and O12 bottom left,

• three targets always lie in the square, including edges,
• the Euclidean distance between the goals is at least 2.

While we recognize that the described structural information
is highly specific, information of such type is often available
in urban or military planning, where units or facilities may
be arranged in a specific formation [21], [22].

The mission of the agent is given as follows: if the agent
visits any one of the obstacles, then it has to visit all of
the targets T1, T21 and T22. If the agent does not visit an
obstacle, then the mission is complete if it visits a state
labeled T1, and at least one of the states labeled T21 or T22.
This mission can be expressed in the following specification:

ϕ =

(♦T1 ∧ ♦T21 ∧ ¬�O11 ∧ ¬�O12 ∧ ¬�O21 ∧ ¬�O22)∨
(♦T1 ∧ ♦T22 ∧ ¬�O11 ∧ ¬�O12 ∧ ¬�O21 ∧ ¬�O22)∨
(♦T1 ∧ ♦T21 ∧ ♦T22 ∧ ¬�O12 ∧ ¬�O21 ∧ ¬�O22)∨
(♦T1 ∧ ♦T21 ∧ ♦T22 ∧ ¬�O11 ∧ ¬�O21 ∧ ¬�O22)∨
(♦T1 ∧ ♦T21 ∧ ♦T22 ∧ ¬�O11 ∧ ¬�O12 ∧ ¬�O22)∨

(♦T1 ∧ ♦T21 ∧ ♦T22 ∧ ¬�O11 ∧ ¬�O12 ∧ ¬�O21) . (5)

Specification (5) falls within the class of (1), where the agent
needs to satisfy at least one of six reach-avoid tasks ϕi; to
obtain the form of (1), we can formally combine all obstacles
mentioned in task ϕi into a new obstacle label Oi.

The agent starts at the top left corner of the grid. Assuming
that all labelings that satisfy the known structural information
are equally probable, Fig. 2b shows the initial probabilities
of each cell for label type T1. For implementation, we choose
γ = 5, resulting in roughly equal scaling of the exploration
and exploitation weights. Figs. 2c and 2d present some time
instances of the agent’s motion according to Algorithm 1
for the LTL specification (5); the agent completes its task,
by following the first reach-avoid specification, in 10 time
steps. We compare the performance of our algorithm with
Westphal’s reposition algorithm [19] for the CTP as illus-
trated in Fig. 3. The algorithm from [19] requires 20 time
steps to complete the mission, choosing to complete the fifth
reach-avoid specification. We note that, when implementing
Westphal’s algorithm [19], the agent proceeds to satisfy the
mission only once it has discovered exactly where the labels
are. In our algorithm, the agent incorporates exploration and
exploitation from the start of the mission.

VII. CONCLUSIONS

In this paper, we formulated a path planning problem
in a labeled environment with unknown label locations,
and mission objectives given as generalized reach-avoid
specifications in LTL formula. We proposed a solution by
constructing a product transition system from the agent’s



1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a) True environment, a pri-
ori unknown to the agent.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

(b) A priori probability that
a cell is T1.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(c) Agent’s path at t = 7.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(d) Agent’s path at t = 10.

Fig. 2: Illustration of Algorithm 1. The brown cross is the
agent, while the arrows denote the direction of motion. The
labels of black cells are not completely known to the agent,
white cells are known to be vacant, while other colored cells
denote the discovered label types as in Fig. 2a, at that time.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Fig. 3: Agent’s path produced by Westphal’s algorithm [19],
with the same coloring scheme as in Fig. 2a.

transition system and an automaton representing its mission;
a probability distribution on label locations which translated
into a probability distribution on transitions in the product
transition system. The resulting problem is a highly struc-
tured instance of a Canadian traveler problem. We proposed
to solve this problem by a path planning procedure on a
deterministic graph modeling the agent’s knowledge about
the environment, with graph weights balancing between ex-
ploring the environment and exploiting the objective. Finally,
we implemented the algorithm for an agent operating on a
grid-world with local sensor information and prior structural
knowledge about target and obstacle locations.

While this work proposes an approach to solve an optimal
planning problem for unknown labels, much remains in terms
of providing theoretical guarantees on the optimality of the
proposed solution: the current algorithm only guarantees

eventual satisfaction of the mission, but there is no developed
theory on the time to complete a mission, nor on the optimal
choice of graph weights (including the parameter γ). As indi-
cated in previous sections, the considered LTL specifications
readily generalize to a wider class of co-safe LTL formulae;
however, these formulae can give rise to large automata,
resulting in large product transition systems. Future practical
work with such automaton thus likely requires automating
the conversion into a product environment.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[2] Z. Zhou, J. Ding, H. Huang, R. Takei, and C. Tomlin, “Efficient path
planning algorithms in reach-avoid problems,” Automatica, vol. 89,
pp. 28–36, 2018.

[3] N. E. Du Toit and J. W. Burdick, “Robot motion planning in dynamic,
uncertain environments,” IEEE Transactions on Robotics, vol. 28,
no. 1, pp. 101–115, 2011.

[4] P. D. Triantafyllou, G. A. Rovithakis, and Z. Doulgeri, “Constrained
visual servoing under uncertain dynamics,” International Journal of
Control, vol. 92, no. 9, pp. 2099–2111, 2019.

[5] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic
motion planning for mobile robots,” in IEEE International Conference
on Robotics and Automation, pp. 2020–2025, 2005.

[6] S. M. Milkovich, R. Lange, K. Williford, T. L. Wagner, M. Heverly,
and M. Ono, “Mars 2020 surface mission performance analysis: Part
1. Science exploration and soil type modeling,” in AIAA SPACE and
Astronautics Forum and Exposition, 2018.

[7] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: a new
symbolic model checker,” vol. 2, pp. 410–425, Springer, 2000.

[8] G. Holzmann, The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley, 2003.

[9] E. Vitolo, C. Mahulea, and M. Kloetzer, “Path-planning in Discretized
Environments with Optimized Waypoints Computation,” in 2018 IEEE
23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), vol. 1, pp. 729–735, IEEE, 2018.

[10] M. Kloetzer and C. Mahulea, “Path planning for robotic teams based
on LTL specifications and Petri net models,” Discrete Event Dynamic
Systems, vol. 30, no. 1, pp. 55–79, 2020.

[11] M. Ornik, J. Fu, N. T. Lauffer, W. K. Perera, M. Alshiekh, M. Ono,
and U. Topcu, “Expedited learning in MDPs with side information,”
in 57th IEEE Conference on Decision and Control, pp. 1941–1948,
2018.

[12] A. I. Medina Ayala, S. B. Andersson, and C. Belta, “Temporal logic
motion planning in unknown environments,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 5279–5284,
2013.

[13] N. Berry. http://www.datagenetics.com/blog/december32011/, 2011.
[14] A. Strehl, L. Li, and M. Littman, “Reinforcement learning in finite

MDPs: PAC analysis,” Journal of Machine Learning Research, vol. 10,
pp. 2413–2444, 2009.

[15] J. E. Kline, “A tactical doctrine for distributed lethality,” in Distributed
Lethality 2016: A CIMSEC Compendium (D. Filipoff, M. Merighi,
J. Stryker, and S. DeBoer, eds.), pp. 4–9, 2016.

[16] C. Baier and J. Katoen, Principles of Model Checking. MIT Press,
2008.

[17] A. Bar-Noy and B. Schieber, “The Canadian Traveller Problem.,” in
SODA, vol. 91, pp. 261–270, 1991.

[18] Z. W. Lim, D. Hsu, and W. S. Lee, “Shortest Path under Uncertainty:
Exploration versus Exploitation,” in Conference on Uncertainty in
Artificial Intelligence, 2017.

[19] S. Westphal, “A note on the k-Canadian traveller problem,” Informa-
tion Processing Letters, vol. 106, no. 3, pp. 87–89, 2008.

[20] R. Bellman, “On a routing problem,” Quarterly of applied mathemat-
ics, vol. 16, no. 1, pp. 87–90, 1958.

[21] Department of the Army, “Civil disturbance operations,” Tech. Rep.
FM 3-19.15, 2005.

[22] J. Lang, Urban Design: The American Experience. Wiley, 1994.


