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Abstract

In an adversarial environment, a hostile player performing a task may behave like a non-hostile one in order not to reveal its
identity to an opponent. To model such a scenario, we define identity concealment games: zero-sum stochastic reachability
games with a zero-sum objective of identity concealment. To measure the identity concealment of the player, we introduce the
notion of an average player. The average player’s policy represents the expected behavior of a non-hostile player. We show that
there exists an equilibrium policy pair for every identity concealment game and give the optimality equations to synthesize
an equilibrium policy pair. If the player’s opponent follows a non-equilibrium policy, the player can hide its identity better.
For this reason, we study how the hostile player may learn the opponent’s policy. Since learning via exploration policies would
quickly reveal the hostile player’s identity to the opponent, we consider the problem of learning a near-optimal policy for the
hostile player using the game runs collected under the average player’s policy. Consequently, we propose an algorithm that
provably learns a near-optimal policy and give an upper bound on the number of sample runs to be collected.

Key words: Identity concealment; Deception; Game theory; Markov models; Offline learning.

1 Introduction

In an adversarial environment, an agent interacts with a
non-cooperative opponent. For a hostile agent, it may be
important not to expose its identity since the opponent
might attempt to hinder the agent’s operation knowing
that the agent is hostile. For instance, intelligence ser-
vices often instruct the agents who are under surveillance
to dry-clean, that is, to evade surveillance in a way that
looks accidental, not intentional, since intentional eva-
sions cause suspicion (Macintyre 2018). This behavior
motivated video games such as Spy Party (Hecker 2018)
and Garry’s Mod Guess Who (Newman 2015) where the
goal is to complete tasks behaving like a non-playable
character, i.e., a bot. While identity concealment is a
significant behavior in reality, it has not been studied
in the literature of zero-sum games, which is a common
formalism of adversarial settings (Kardes & Hall 2005).

⋆ This paper was not presented at any IFAC meeting. Cor-
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utopcu@utexas.edu (Ufuk Topcu).

We formalize the above notion of identity concealment
in two-player zero-sum reachability games. We consider
a graph as the state space of the game. The goal of a
hostile player is to reach a set of target states, but in
a way that its behavior looks similar to the behavior of
non-hostile players, i.e., the hostile player aims to make
its win look coincidental. The goal of the opponent is to
distinguish between hostile and non-hostile players. As
a reference point, we introduce an abstract notion of an
average player to measure the identity concealment of a
hostile player. The average player’s policy represents the
expected behavior of non-hostile players. For example, in
the cyber interaction scenario shown in Figure 1, hostile
players are attackers who perform a denial-of-service at-
tack against a server, and average players are real clients
interacting with the server. The attackers’ goal is to over-
whelm the server and make it fail to provide service to
real clients while not being identified. The server is the
opponent that aims to distinguish the attackers from
real clients. We measure identity concealment by the cu-
mulative Kullback-Leibler (KL) divergence between the
action distribution of a hostile player and the action dis-
tribution of an average player over a game run. As the
KL objective function increases, the opponent can dis-
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Figure 1. A cyber interaction scenario as a two-player game.
The game is played between a client and the server. The
server does not know the identity of the client, whether the
client is an attacker or a real client. The states of the game
represent the remaining times for the client’s processed re-
quests if there are any. At every time, the client can discon-
nect, make a request or wait. The server can accept or reject
the client’s potential request.

tinguish a hostile player from a non-hostile player more
easily. For example, in the cyber interaction scenario,
a game run can represent the history of the client’s re-
quests and the server’s responses. In particular, possibly
complex or time-varying behavior (such as repeated re-
quests for unrelated computationally heavy resources)
may indicate that the client is hostile, i.e., an attacker.

We define the identity concealment game as the two-
player zero-sum reachability game with the cumulative
KL divergence objective function. We first identify the
conditions for which the value of the KL objective func-
tion is finite, i.e., the opponent is never sure the player is
hostile. Then, we show that there exists an equilibrium
policy pair for a hostile player and the opponent, which
can be synthesized using value iteration.

The hostile player can achieve a lower value than
the equilibrium value if the opponent follows a non-
equilibrium policy. In this case, an equilibrium policy is
not necessarily optimal for the hostile player against an
imperfect opponent. The hostile player needs to learn
and respond to the opponent’s suboptimal policy to
achieve the optimal value. However, the player’s ability
to learn in the described setting is limited in that an
active learner would quickly reveal its identity during
exploration. We consider the question of whether it is
possible to learn a near-optimal policy offline by solely
using the game runs collected under the average player’s
policy. The output policy needs to be near-optimal in
that the KL objective function is ε-optimal, and the
probability of winning is at least 1 − λ where ε and λ
are the input parameters of the algorithm.

We provide an algorithm that solely uses a finite num-
ber of runs collected under the average player’s pol-
icy to learn a near-optimal policy. To show the near-
optimality in the KL objective, we utilize and improve
some of the probably approximately correct Markov de-
cision processes (PAC-MDP) learning results (Fiechter
1994, Kearns & Singh 2002, Strehl & Littman 2008). To
show the near-optimality in the probability of winning,
we show that under the output policy, the hostile player

can lose the game only if an unknown state, i.e., a state
with a low number of samples, is visited. Then, we show
that the unknown states cannot be visited with a high
probability if the number of sample runs is high enough.

We give the proofs of some technical results in (Karabag
et al. 2021b) due to lack of space.

2 Related Work

The KL objective function is used for different purposes
including deception in supervisory control (Karabag
et al. 2021a), game balancing (Grau-Moya et al. 2018),
inverse reinforcement learning (Boularias et al. 2011),
and reinforcement learning (Fox et al. 2016, Peters et al.
2010). Karabag et al. (2021a) utilized Sanov’s theo-
rem (Cover & Thomas 2012) and the KL divergence of
the path distributions in MDPs for deception in super-
visory control. In that paper, the supervisor designs a
reference policy to an agent, which is supposed to follow
this policy, but it deviates from the reference policy to
achieve a malicious task. The goal of the supervisor is
to design a reference policy that minimizes deviations.
While we use the objective function for the same pur-
pose, this paper differs from (Karabag et al. 2021a) in
that the opponent (analogue of the supervisor) does not
design the average player’s policy (analogue of the refer-
ence policy). Instead, the opponent designs a policy that
determines the observability of the player (analogue
of the agent). Grau-Moya et al. (2018) used the KL
divergence objective for game balancing in two-player
stochastic games. Aside from the contextual differences,
the objective function in (Grau-Moya et al. 2018) has
a discount factor. We, on the other hand, do not have
a discount factor that significantly differs the proof for
the existence of an equilibrium. Goal and plan obfusca-
tion (Kulkarni et al. 2019, Keren et al. 2016) are similar
to the concept of identity concealment. We consider a
measure based on statistical hypothesis testing, whereas
the cited works consider measures based on the distance
of the observation sequences generated by a game run.

The learning algorithm provided in this paper is re-
lated to PAC-MDP algorithms (Kearns & Singh 2002,
Strehl & Littman 2008). While these algorithms guar-
antee near-optimality after a finite number of subopti-
mal actions, there are no guarantees on the suboptimal-
ity of the transient learning period due to exploration.
In the adversarial setting described in this paper, the
use of PAC-MDP algorithms would reveal the identity
of the player during the learning period. The algorithm
provided in this paper uses a fixed policy, the average
player’s policy, to learn, whereas PAC-MDP algorithms
learn in an exploratory manner. The learning algorithm
provided in this paper is also related to off-policy eval-
uation and optimization (Farajtabar et al. 2018, Pre-
cup et al. 2000, Yu et al. 2020, Kidambi et al. 2020,
Levine et al. 2020) as we collect offline samples using a
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behavior policy that is not the target policy to be eval-
uated or optimized. In detail, our algorithm is similar
to model-based off-policy optimization (Yu et al. 2020,
Kidambi et al. 2020). The existing offline learning liter-
ature considers the single-objective discounted infinite
horizon (Puterman 2014) setting. On the other hand,
we consider a multi-objective infinite horizon setting,
where one of the objectives, probability of winning, is
undiscounted, and the other objective is the KL diver-
gence. Similar to the existing model-based offline learn-
ing methods, we show the near-optimality in the KL di-
vergence by showing that the learned model is close to
the actual model. To show the near-optimality in the
probability of winning, we use a new approach that uti-
lizes the near-optimality of the KL objective function.

The sample complexity of offline policy optimization
is dependent on the distributional shift between the
behavior and optimal policies (Levine et al. 2020). How-
ever, quantifying the distributional shift is challenging
since it requires knowing the statistical properties of
the processes induced by the policies. To ensure that
the learned policy does not suffer from distributional
shift, existing learning methods use KL divergence as
a regularizer (Schulman et al. 2015). We, on the other
hand, use the equilibrium value of KL divergence to
reason about the maximum distributional shift that
a near-optimal policy can have and guarantee near-
optimality in the probability of winning: Since the
maximum distributional shift of the near-optimal pol-
icy is bounded, we can bound the probability of losing
for the hostile player. This approach allows us to give
an explicit bound on the number of samples required
to synthesize a near-optimal policy. Unlike the existing
model-based off-policy optimization works that provide
sample complexity bounds with agnostic dependencies
on the distributional shift (Ross & Bagnell 2012, Ue-
hara & Sun 2021), we give a bound that has a known
dependency on the distributional shift thanks to the
known equilibrium value of the game.

3 Preliminaries

In this section, we give preliminaries on two-player
stochastic games and objective functions for the games.

3.1 Two-Player Stochastic Games and Markov Deci-
sion Processes

A two-player stochastic game is a tuple G = (S,A1,A2,
P, s0) where S is a finite set of states, A1 is a finite set
of actions for Player 1, A2 is a finite set of actions for
Player 2, P : S ×A1 ×A2 × S → [0, 1] is the transition
probability function, and s0 ∈ S is the initial state. We
note that the available actions can be state-dependent.
We use fixed sets,A1 andA2, for the available actions of
players for clarity of presentation. For every state s ∈ S,

∑
q∈S P(s, a1, a2, q) = 1 for all (a1, a2) ∈ A1 × A2. We

use S to denote the cardinality of S, and A to denote
the maximum of the cardinalities of A1 and A2. The
successor states of state s is denoted by Succ(s) where
state q is in Succ(s) if and only if there exist actions
(a1, a2) ∈ A1 × A2 such that P(s, a1, a2, q) > 0. State
s is absorbing if and only if Succ(s) = {s}, and there is
only one available action for each player. The set of all
absorbing states is Sabs.

The game has infinite steps. At every time step t,
Players 1 and 2 choose their actions, a1t and a2t ,
simultaneously and transition to state st+1 from
st with probability P(st, a

1
t , a

2
t , st+1). The history

ht = s0a
1
0a

2
0 . . . st−1a

1
t−1a

2
t−1st at time t is the sequence

of all previous states and actions. The set of all possible
histories at time t is denoted by Ht.

A (history-dependent) policy for Player i is a sequence
πi = µi

0µ
i
1 . . . where each µi

t : Ht × Ai → [0, 1] is a de-
cision function such that

∑
ai∈Ai µi

t(ht, a
i) = 1 for all

ht ∈ Ht. Given the history ht, we use µi
t(ht) to denote

the action distribution under Player i’s policy πi at time
t and state st. A stationary policy for Player i is a se-
quence πi = µiµi . . . such that µi : S × Ai → [0, 1] and∑

ai∈Ai µi(s, ai) = 1 for all s ∈ S. The set of all policies
for Player i is denoted by Πi. The set of all stationary
policies Player i is denoted by Πi,St. For state s, we use
πi(s) to denote the action distribution under Player i’s
stationary policy πi. A run γ = s0a

1
0a

2
0s1a

1
1a

2
1 . . . is an

infinite sequence states and actions under policies π1 and
π2 such that P(st, a

1, a2, st+1) µ
1
t (ht, a

1) µ2
t (ht, a

2) > 0
for all t ≥ 0, i.e., all transitions are feasible. The proba-
bility distribution of runs under π1 and π2 is denoted by

Γπ1,π2

. The probability distribution of histories at time

t is denoted by Γπ1,π2

t . The (undiscounted) occupancy
measure of state s is the expected number of times state

s is visited and is equal to
∑∞

t=0 Pr
π1,π2

(st = s|s0).

A Markov decision process (MDP) is a tuple M =

(S ′
,A′

,P ′
, s

′

0) where S ′
is a finite set of states, A′

is

a finite set of actions, P ′
: S ′ × A′ × S ′ → [0, 1] is

the transition probability function, and s
′

0 is the initial
state. A two-player stochastic game where one of the
players uses a known, fixed policy is an MDP.

3.1.1 Zero-Sum Objective and Equilibrium Policies

A payoff function c : S ×∆|A1| ×∆|A2| → R maps the
state and action distributions of the players to a payoff
value where ∆k is the k-dimensional probability simplex.
At time t, Players 1 and 2 with policies π1 = µ1

0µ
1
1 . . . and

π2 = µ2
0µ

2
1 . . . receive a payoff of c(st, µ

1
t (ht), µ

2
t (ht)).

Let Xt = (st, a
1
t , a

2
t ) be a random variable consisting of

the random state and actions of the players at time t.
For the random process {Xt}, the hitting time τ to the
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set Sabs of absorbing states is a random variable defined
by τ = min{t ≥ 0|st ∈ Sabs} taking values in N ∪ {∞}.
Using the hitting time, the zero-sum objective function

C(π1, π2) = E

[
τ∑

t=0

c(st, µ
1
t (ht), µ

2
t (ht))

]

is the expected cumulative payoff until the random stop-
ping time τ where the expectation is over the random-
ness of policies, π1 and π2, and the dynamics P of the
game. Player 1 is theminimizer, and Player 2 is themax-
imizer of the zero-sum objective.

Let P 1 and P 2 denote the fixed sets of feasible policies
for Players 1 and 2, respectively. A pair (π1,∗, π2,∗) ∈
P 1 × P 2 of policies is an equilibrium policy pair if and
only if

sup
π2∈P 2

C(π1, π2,∗) ≤ C(π1,∗, π2,∗) ≤ inf
π1∈P 1

C(π1, π2,∗).

If such an equilibrium policy pair (π1,∗, π2,∗) exists, v∗ =
C(π1,∗, π2,∗) is the equilibrium value of the game.

3.1.2 Reachability Objective

The event of eventually reaching setD is denoted by ♢D.
Under policies π1 and π2, the probability of reaching

set D from state s is denoted by Prπ
1,π2

(♢D|s). The
probability of reaching setD from state s in L time steps

is denoted by Prπ
1,π2

(♢≤LD|s).

SR denotes the set of winning states for Player 1 for
the reachability objective. Player 1 wins if and only if
the game run γ = s0a

1
0a

2
0s1a

1
1a

2
1 . . . satisfies st ∈ SR for

some t ≥ 0, i.e., γ satisfies ♢SR . A policy π1 for Player 1

is winning if minπ2∈Π2 Prπ
1,π2

(♢SR|s0) = 1. We denote
the set of winning policies for Player 1 by Π1,win, and we
denote the set of winning stationary policies for Player 1
by Π1,St,win = Π1,St ∩ Π1,win. For simplicity of presen-
tation, we assume that all winning states are absorbing.

3.2 Kullback–Leibler (KL) Divergence

The support of a discrete probability distribution Q
is denoted by Supp(Q). For discrete probability dis-
tributions Q1 and Q2 where Supp(Q1) = X , the
Kullback–Leibler (KL) divergence between Q1 and
Q2 is KL(Q1||Q2) =

∑
x∈X Q1(x) log (Q1(x)/Q2(x))

where log denotes the natural logarithm. We define
0 log(0/0) = 0. Data processing inequality (Cover
& Thomas 2012) states that any transformation
T : X → Y satisfiesKL(Q1||Q2) ≥ KL(T (Q1)||T (Q2)).

Let π1′ be a policy for Player 1. Note that

KL
(
Γπ1,π2

t ||Γπ1′ ,π2

t

)
≤ KL

(
Γπ1,π2

t+1 ||Γπ1′ ,π2

t+1

)

due to the data processing inequality. We define

KL
(
Γπ1,π2

||Γπ1′ ,π2)
= lim

t→∞
KL

(
Γπ1,π2

t ||Γπ1′ ,π2

t

)
.

The limit either converges or diverges to ∞ due

to monotonicity of KL
(
Γπ1,π2

t ||Γπ1′ ,π2

t

)
. We denote

KL
(
Γπ1,π2 ||Γπ1′ ,π2)

with KL(π1, π2||π1′ , π2) for nota-
tional simplicity.

4 Problem Statement

We consider a two-player stochastic game G =
(S,A1,A2,P, s0). In this game, Player 1 aims to sat-
isfy the reachability objective ♢SR, i.e., win the game.
Player 1 may be hostile, i.e., it may aim to reach SR

for malicious purposes. For example, in the cyber in-
teraction scenario shown in Figure 1, Player 1 may be
a client performing a denial-of-service attack. Player 2
is not aware of the identity of Player 1. In the cyber
interaction scenario, Player 2 represents the server and
does not know whether the client is an attacker. When
Player 1 is hostile, its goal is not to expose its identity
while winning the game. Player 2, on the other hand,
aims to detect the identity of Player 1, i.e., determine
whether Player 1 is hostile, in addition to making Player
1 lose the game. In the cyber interaction scenario, the
goal of Player 1, i.e., a hostile client, is to perform an
attack while not being detected by the server, and the
goal of Player 2, i.e., the server, is to provide service
to well-meaning clients while identifying hostile clients.
In this setting, we assume that both players have full
information on the current state and full information
on each other’s previous actions.

We consider an average player as the reference point
to measure identity concealment. The average player’s
policy encodes the expected behavior of a non-hostile
player interacting with Player 2, and can be used to mea-
sure how much Player 1’s policy π1 exposes its identity
and how well Player 2’s policy π2 distinguishes hostile
agents. The average player’s policy πAv is not necessar-
ily designed to win the game against Player 2, but the
average player can accidentally win the game due to the
stochasticity of the environment or its policy. For ex-
ample, in the cyber interaction scenario, πAv may rep-
resent the average behavior of non-hostile clients, i.e.,
real users, interacting with the server. These clients may
cause a denial-of-service, but their goal is not necessar-
ily to cause a breakdown. We assume that the average
player’s policy πAv is common knowledge. We also have
the following assumption which ensures the computa-
tional tractability of the problems to be proposed.

Assumption 1. The average player’s policy πAv is sta-
tionary on the state space S, i.e., πAv ∈ Π1,St.
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Because an average player can win the game with a posi-
tive probability, a win in the game does not immediately
identify Player 1 as hostile. Therefore, Player 1 aims to
make its win look accidental and indistinguishable from
an average player’s win. On the flip side, Player 2 aims
to design its policy in a way that the identity conceal-
ment of Player 1 is minimized, i.e., an average player and
a hostile Player 1 produce different game runs.

We define the identity exposure payoff at time t as the
KL divergence between the action distribution µ1

t (ht)
under Player 1’s policy π1 = µ1

0µ
1
1 . . . and the action

distribution πAv(st) under the average player’s policy
πAv. Formally, the payoff of Players 1 and 2 is

c(st, µ
1
t (ht), µ

2
t (ht)) := KL(µ1

t (ht)||πAv(ht)) (1)

at time t. For clarity of presentation, we restrict the
feasible policy spaces of Players 1 and 2 to stationary
policies, i.e., π1 ∈ Π1,St and π2 ∈ Π2,St. In this case, the
payoff of Players 1 and 2 is

c(st, π
1(st), π

2(st)) = KL(π1(st)||πAv(st))

=
∑

a1∈A1

π1(st, a
1) log

(
π1(st, a

1)

πAv(st, a1)

)

at time t. This payoff decreases when π1(st) gets more
similar to πAv(st). The payoff is 0 when the action distri-
butions of Player 1 and the average player is the same,
i.e., π1(st) = πAv(st).

Using the hitting time τ that is the first hitting time to
the set Sabs of absorbing states, the zero-sum identity
concealment objective function is

C(π1, π2) := E

[
τ∑

t=0

KL(π1(st)||πAv(st))

]

where the expectation is over the randomness of policies,
π1 and π2, and the dynamics P of the game. Player 1 is
theminimizer and Player 2 is themaximizer of the zero-
sum objective: Hostile Player 1 aims to behave similar to
the average players and Player 2 aims to distinguish hos-
tile Player 1 from the average players. The zero-sum ob-
jective accounts for the total identity exposure of Player
1 until the effective end of the game, i.e., reaching an
absorbing state. We discuss the relationship of this ob-
jective function with hypothesis testing in Section 4.1.

We define an identity concealment game IC = (S,A1,A2,
P, s0,SR, πAv) as a two-player stochastic game with
objective functions

C(π1, π2) = E

[
τ∑

t=0

KL(π1(st)||πAv(st))

]

and
1− Prπ

1,π2

(♢SR|s0),
where Player 1 is the minimizer and Player 2 is the max-
imizer for both functions. We remark that the game is
not well-defined due to multiple objective functions, and
one needs combine these objective functions to find op-
timal policies. Chen et al. (2013) showed that when mul-
tiple objective functions are combined with a conjunc-
tion where each predicate is a threshold for an objective
function, it is, in general, computationally hard to com-
pute optimal policies. To bypass computational issues,
we pose the following problem that constrains the value

of the objective function 1 − Prπ
1,π2

(♢SR|s0) to 0, i.e.,
Player 1 must use a winning policy.

Problem 2. For a given identity concealment game
IC, determine whether there exists an equilibrium pair
(π1,∗, π2,∗) ∈ Π1,St,win ×Π2,St of policies such that

sup
π2∈Π2,St

C(π1, π2,∗) ≤ C(π1,∗, π2,∗)

and
C(π1,∗, π2,∗) ≤ inf

π1∈Π1,St,win
C(π1, π2,∗).

Remark 3. We state that Player 1 aims to win with
probability 1 and assume that there exists such awinning
policy. If there is not such a policy, one can use the
weighted zero-sum objective function C(π1, π2)+α(1−
Prπ

1,π2

(♢SR|s0)) where α ∈ R∪{∞} is the weight of the
winning objective. When winning in the game is a hard
constraint for Player 1, i.e., when α = ∞, the weighted
zero-sum objective function recovers Problem 2.

Player 1 can achieve a lower value than the equilibrium
value of the game if Player 2 uses a suboptimal non-
equilibrium policy. In this case, the optimal policy of
Player 1 is not necessarily the equilibrium policy, and
the hostile Player 1 may need to learn Player 2’s policy
to synthesize the optimal policy. While it is possible to
learn Player 2’s policy with a high amount of exploration,
learning in this way is undesirable in the described ad-
versarial setting since naive exploration would quickly
reveal the identity of the hostile Player 1. Furthermore,
Player 1 may not be able to collect game runs by directly
interacting with Player 2 and may only observe Player
2’s interactions with average players. Hence, the hostile
Player 1’s goal is to learn Player 2’s policy from runs
collected under the average player’s policy and compute
the optimal policy. We propose the following problem.

Problem 4. For an identity concealment game IC, let
π2,◦ be Player 2’s policy that is unknown a priori to
Player 1 and π1,◦ = argminπ∈Π1,win C(π1, π2,◦). Given
ε > 0, λ ∈ [0, 1], and δ ∈ [0, 1], find an algorithm that
uses a finite number of runs that are collected only us-
ing the average player’s policy so that the (potentially
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history-dependent) output policy π1 of the algorithm
satisfies

C(π1, π2,◦) ≤ C(π1,◦, π2,◦) + ε

and
Prπ

1,π2,◦
(♢SR|s0) ≥ 1− λ,

with probability at least 1− δ.

4.1 KL Divergence Payoffs and Hypothesis Testing

The identity concealment game has a KL objective func-
tion C(π1, π2) = E

[∑τ
t=0 KL(π1(st)||πAv(st))

]
moti-

vated by statistical hypothesis testing. The sum of KL
stage payoffs is equal to the KL divergence between the
probability distribution of runs under Player 1’s policy
π1 and Player 2’s policy π2, and the probability distri-
bution of runs under the average player’s policy πAv and
Player 2’s policy π2. Formally, as we explain later in the
proof of Lemma 6, we have

E

[
τ∑

t=0

KL(π1(st)||πAv(st))

]
= KL

(
π1, π2||πAv, π2

)
.

By Sanov’s theorem, exp
(
−nKL

(
π1, π2||πAv, π2

))
measures the probability that n random game runs
with a hostile Player 1 occur under the average player’s
policy. Consequently, as the number n of game runs
or KL

(
π1, π2||πAv, π2

)
increases Player 2 is more

likely to identify a hostile player. More formally, as
nKL

(
π1, π2||πAv, π2

)
increases, the accuracy of the

likelihood-ratio test (Hogg et al. 1977) increases. The
goal of Player 1 is thus to minimizeKL

(
π1, π2||πAv, π2

)
,

while the goal of Player 2 is to maximize this value.

5 Equilibrium Policies for Identity Conceal-
ment Games

In this section, we prove the existence of an equilibrium
for the identity concealment game and provide the opti-
mality equations to compute it.

If there exists an equilibrium, and the equilibrium value
for value for C(π1, π2) is infinite in Problem 2, and all
winning stationary policies are equally good for Player
1. We mainly focus on the more interesting case that
there exists a winning stationary policy π1 ∈ Π1,St,win

such that maxπ2∈Π2,St C(π1, π2) < ∞.

We define that action a1 is permissible for Player 1 at
state s if πAv(s, a1) > 0. For example, all actions are per-
missible at every state for Player 1 for the identity con-
cealment game given in Figure 2. Note that if Player 1
takes an impermissible action with a positive probabil-
ity, then C(π1, π2) is infinite, i.e., with a positive proba-
bility Player 2 is certain that Player 1 is not an average

s0

s1

s2

s3

s8

s4

s5 s6

s7

{b}
, {x

}, 1

{b}, {y}, 1

{a}, {x}, 1

{a}, {y}, 1
{a}, {x, y}, 1

{b}, {x, y}, 1

{a, b}, {x, y}, 0.5

{a, b}, {x, y}, 0.5

{a, b}, {x}, 1

{a, b}, {x, y}, 1

{a
, b
},
{y
},
1

{a,
b},

{x,
y},

1

{a
}, {

x,
y}
, 1

{b}, {x, y}, 1

{a}, {x, y}, 1

{b}, {x, y}, 1

{a, b}, {x, y}, 1

Figure 2. A identity concealment game where the actions of
Player 1 are a and b, and the actions of Player 2 are x and
y. Nodes are the states of the game. The initial state is s0

and s7 is the only winning state for Player 1. The average
player’s policy πAv takes actions a and b uniformly randomly
at every state. A label D1, D2, p of a directed edge from s to
q means P(s, a1, a2, q) = p for every a1 ∈ D1 and a2 ∈ D2.
A stationary trapping policy for Player 2 takes action x at
every state.

player, since an event happens with a positive proba-
bility under Player 1’s policy and zero probability un-
der the average player’s policy. Note that removing the
impermissible actions does not change the equilibrium
value if the equilibrium value is finite.

Given that the equilibrium value is finite, without loss
of generality, we assume that all impermissible actions
are removed from all states.

Assumption 5. Every available action is permissible
for Player 1.

To find equilibrium policies for Problem 2, we first iden-
tify the states at which Player 2 can win the game with
a positive probability. These states can be found with
a procedure similar to solving reachability games on
graphs (Chatterjee et al. 2008).

State s is a trap state for Player 1 if there exists a policy

π2 ∈ Π2 that satisfies Prπ
Av,π2

(♢SR|s) = 0. For example
states s5 and s6 are trap states in Figure 2. The set of
trap states is denoted by Strap. The set of trap states
is easy to find: Since πAv is stationary, it induces an

6



MDP for Player 2 given the game. On this MDP, to
find π2,trap, we solve a reach-avoid problem where the
objective is to avoid the winning states SR for Player
2. There exists a stationary policy π2,trap ∈ Π2,St that

minimizes Prπ
Av,π2

(♢SR|s) for every s ∈ S (Baier &
Katoen 2008). Since the trapping policy minimizes the
winning probability of an average player for every state,

we have s ∈ Strap if and only if Prπ
Av,π2,trap

(♢SR|s) = 0.

Under Assumption 5, we have Prπ
1,π2,trap

(♢SR|s) = 0
for every s ∈ Strap and π1 ∈ Π1. To observe this, we con-
sider two directed graphs. The policy pair (πAv, π2,trap)

induces a Markov chain. Let G(πAv,π2,trap) be a directed
graph that represents the feasible transitions on this
Markov chain. In this directed graph the states Strap are

not connected to SR since Prπ
Av,π2,trap

(♢SR|s) = 0 for
every s ∈ Strap. Similarly, the policy pair (π1, π2,trap)

induces another Markov chain. Let G(π1,π2,trap) be a di-
rected graph that represents the feasible transitions on
this Markov chain. Under Assumption 5, (π1, π2,trap)

must be a subgraph of G(πAv,π2,trap). This is because
πAv takes every available action for Player 1 with a

positive probability. Since G(π1,π2,trap) is a subgraph of

G(πAv,π2,trap), the states Strap are not connected to SR

in G(π1,π2,trap). Hence, Prπ
1,π2,trap

(♢SR|s) = 0 for every
s ∈ Strap and π1 ∈ Π1.

A stationary winning policy π1 ∈ Π1,St,win never vis-
its a trap state regardless of Player 2’s policy under
Assumption 5. We show this by a contradiction. Con-
sider policies π1 ∈ Π1,St,win and π2 ∈ π2,St that reach
a trap state with a positive probability from the initial

state, i.e., Prπ
1,π2

(♢Strap|s0) > 0. Consider a policy π2′

that is the same as π2 for all states in S \ Strap and
is the same as π2,trap for all states in Strap. We have

Prπ
1,π2′

(♢Strap|s0) = Prπ
1,π2

(♢Strap|s0) > 0 since π2′

is the same as π2 for all states in S \Strap. We also have

Prπ
1,π2′

(♢SR|s) = 0 for all s ∈ Strap since a policy π2′

is the same as π2,trap for all states in Strap. Hence, we

have Prπ
1,π2′

(♢SR|s0) < 1 which contradicts with the
fact that π1 is a winning policy. Without Assumption 5,
there could be a π1 ∈ Π1,St,win that visits a trap state.
All such policies take an impermissible action with a pos-
itive probability and yield an infinite objective value.

We find the set S+ of potentially winning states for
which there exists a policy π1 for Player 1 that reaches
SR with probability 1 for all π2 ∈ Π2 and avoids Strap.
For example, s0, s3, s4, s7, and s8 are the potentially
winning states in Figure 2. We remark that there might
be some states from which Player 2 can avoid the trap
states with probability 1, but never reach the winning
states. For example, s2 is such a state in Figure 2. The
set S+ of potentially winning states can be found by
iteratively expanding SR as in the attractor computa-

tion for two-player reachability games (Chatterjee et al.
2008). We note that stationary policies for Player 1 suf-
fice to achieve maximal S+ against all possible policies
of Player 2 since the game has the Markov property. If
a pair of equilibrium policies exist, then only the states
in S+ are visited with a positive probability since from
all states in S \ S+, there exists a policy for Player 2
such that SR is reached with a probability strictly less
than 1. We define that at state s ∈ S+ action a1 is safe
for Player 1 if and only if all potential successor states
are in S+, i.e., P(s, a1, a2, q) = 0 for all a2 ∈ A2 and
q ∈ S \ S+. Note that for every state in S+, there exists
a safe action due to the construction of S+. For exam-
ple, a and b are safe actions for states s3,s7, and s8, and
a is the only safe action for states s0 and s4.

Having identified the set of states from which Player 1
can win the game with probability 1, we now focus on
the existence of equilibrium policies. We note that the

stage payoff
∑

a1∈A1 π1(st, a
1) log

(
π1(st,a

1)
πAv(st,a1)

)
is a con-

vex function of the policy parameters of the minimizer,
i.e., Player 1 and a concave function of the policy param-
eters of themaximizer, i.e., Player 2. Zero-sum stochastic
games with such payoffs have an equilibrium when the
payoffs are discounted (Başar & Olsder 1998). However,
the game that we consider does not have a discount. To
show the existence of an equilibrium, we need to prove
additional properties of the identity concealment game.

Lemma 6 shows that if the initial state is in the po-
tentially winning states, then there exists a (stationary)
policy that makes the KL objective function finite. Fur-
thermore, the occupancy measure at all states, but the
states in Sabs must be finite in order to have a finite value
for the KL objective function. To show this, we consider
the visitation distributions for an arbitrary state since
the KL divergence between the visitation distributions
is a lower bound on the KL objective function. Proof of
Lemma 6 shows that the policy pairs that induce infinite
occupancy measure for a state that is not in Sabs lead
to a visitation distribution that has infinite KL diver-
gence from the distribution under the average player’s
policy. Formally, a pair (π1, π2) of (history-dependent)

policies is prolonging if
∑∞

t=0 Pr
π1,π2

(st = s|s0) = ∞ for
some s ∈ S+ \Sabs. All prolonging pairs (π1, π2) of poli-
cies satisfy C(π1, π2) = ∞. For example, consider state
s8 of the identity concealment game shown in Figure 2.
There exists history-dependent policies for Player 1 that

induces
∑∞

t=0 Pr
π1,π2

(st = s|s0) = ∞ if s8 is reached
with a positive probability. All such policy pairs have
C(π1, π2) = ∞. We use properties given in Lemma 6 to
show the existence of an equilibrium.

Lemma 6. If s0 ∈ S+, then there exists a winning policy
π1,fin ∈ Π1,win that satisfies C(π1,fin, π2) < ∞, and∑∞

t=0 Pr
π1,fin,π2

(st = s|s0) < ∞ for all s ∈ S+ \SR and
π2 ∈ Π2.
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If
∑∞

t=0 Pr
π1,inf ,π2

(st = s|s0) = ∞ for some s ∈ S+\SR

and π1,inf ∈ Π1, then C(π1,inf , π2) = ∞.

We use the additional Lemma 7 to prove Lemma 6. The
proof of Lemma 7 follows from that

∑
n∈C′ D1(n)n = ∞

where n ∈ C ′ if and only if D1(n) > c1 exp(−nc2/2).

Lemma 7. Let D1 and D2 be discrete probability
distributions such that Supp(D1), Supp(D2) ⊆ N. If∑∞

n=0 D1(n)n = ∞ and there exist c1, c2 ∈ (0,∞) such
that D2(n) ≤ c1 exp(−c2n), then KL(D1||D2) = ∞.

Proof of Lemma 6. We prove the first part of the lemma
by constructing a policy using safe actions and the defi-
nition of potentially winning states. For the second part,
we lower bound the KL objective using the data process-
ing inequality, and the time distributions at the states
in S+ \ SR. We show that the lower bound and, conse-
quently, the objective function are infinite if the Player
1’s policy has infinite occupancy measure at S+ \ SR.

We show the existence of a stationary π1,fin by construc-
tion. At states in S+, π1,fin takes all permissible, safe ac-
tions uniformly randomly. To show C(π1,fin, π2) < ∞,
we first note that by definition of conditional expec-

tation, C(π1,fin, π2) =
∑

s\Sabs

∑∞
t=0 Pr

π1,fin,π2

(st =

s|s0)KL(π1(s)||πAv(s)).

For every s ∈ S+, we have KL(π1(s)||πAv(s)) <
∞ since π1,fin takes only permissible actions. Let
c̄ = maxs∈S+ KL(π1(s)||πAv(s)).

By definition of S+, there must exist a state st ∈ S+ and

such that Prπ
1,fin,π2

(st+1 ∈ SR|st) > 0 for all π2. Sim-

ilarly, Prπ
1,fin,π2

(♢≤SSR|ht) > 0 for all ht ∈ Ht. Since
the game ends in every S steps with a positive proba-

bility, we have
∑

s∈S\Sabs

∑∞
t=0 Pr

π1,fin,π2

(st = s|s0) ≤
t̄ < ∞. Therefore, we have C(π1,fin, π2) ≤ c̄t̄ < ∞.

We now prove that if
∑∞

t=0 Pr
π1,inf ,π2

(st = s) = ∞ for
some s ∈ S+ \ SR, then C(π1,inf , π2) is infinite. We
first represent the objective functionC(π1, π2) as the KL
divergence between the probability distribution of runs
under Player 1’s policy π1 and Player 2’s policy π2, and
the probability distribution of runs under the average
player’s policy πAv and Player 2’s policy π2. In detail,

C(π1, π2) = E

[
τ∑

t=0

∑
a1∈A1

µ1
t (ht, a

1) log

(
µ1
t (ht, a

1)

πAv(st, a1)

)]

= E

[ ∞∑
t=0

∑
a1∈A1

µ1
t (ht, a

1) log

(
µ1
t (ht, a

1)

πAv(st, a1)

)]

= E


∞∑
t=0

∑
st+1∈S
a1∈A1

a2∈A2

µ1
t (ht, a

1)µ2
t (ht, a

2)P(st, a
1, a2, st+1)

log

(
µ1
t (ht, a

1)µ2
t (ht, a

2)P(st, a
1, a2, st+1)

πAv(st, a1)µ2
t (ht, a2)P(st, a1, a2, st+1)

)]
= lim

t→∞

∑
γt∈Supp(Γπ1,π2

t )

Prπ
1,π2

(γt) log

(
Prπ

1,π2

(γt)

Prπ
Av,π2

(γt)

)

where the first equality is by definition, the second equal-
ity is because for t ≥ τ st ∈ Sabs and every state s ∈ Sabs

has a single action inducing 0 KL divergence cost, and
the last inequality is due to the chain rule of KL diver-
gence and Markovianity of the game.

Let ♢ ⃝ D denote the event of eventually reaching set
D starting from the next time step. The game run γ =
s0a

1
0a

2
0s1a

1
1a

2
1 . . . satisfies ♢⃝D if and only if there ex-

ists st ∈ D for some t ≥ 1. We first claim that for all
π2 ∈ Π2, t ≥ 0, and ht ∈ Ht such that st ∈ S+ \ SR,

we have Prπ
Av,π2

(♢⃝ {st}|ht) < 1. In words, a state in
S+ \ SR will not be visited back with a positive proba-
bility. Note that stationary policies for Player 2 suffice
to maximize the reachability probability to a state in

the MDP induced by πAv. If Prπ
Av,π2

(♢⃝ {st}|ht) = 1

for some π2 ∈ Π2,St, then we have Prπ
Av,π2

(♢SR|st) = 0
and st must be a trap state. This yields a contradiction
since s ∈ S+ and S+ ∩Strap = ∅. Thus, for all π2 ∈ Π2,
t ≥ 0, and ht ∈ Ht such that st ∈ S+ \ SR, we have

Prπ
Av,π2

(♢⃝{st}|ht) < 1. Let NAv,2
s be a random vari-

able denoting the number of times that s ∈ S+ \ SR

appears in a random run under πAv and π2. Similarly,
let N1,2

s be a random variable denoting the number of
times that s ∈ S+ \ SR appears in a random run under

π1 and π2. Since Prπ
Av,π2

(♢⃝{s}|ht, st = s) < 1, there
exists a c ∈ [0, 1) such that Pr(NAv,2

s = k) ≤ ck−1 for all

k ≥ 1 and Pr(NAv,2
s = 0) ≤ 1. If

∑∞
t=0 Pr

π1,inf ,π2

(st =
s) = ∞ for some s ∈ S+ \ SR, then by Lemma 7, we
have KL(N1,2

s ||NAv,2
s ) = ∞ for some s ∈ S+ \ SR. By

the data processing inequality, for all s ∈ S we have
KL(N1,2

s ||NAv,2
s ) ≤ KL(π1,inf , π2||πAv,inf , π2). Thus,

KL(π1,inf , π2||πAv, π2) = C(π1,inf , π2) = ∞.

We note three facts: 1) All prolonging pairs (πinf,1, π2)

of policies for which
∑τ

t=0 Pr
πinf,1,π2

(st = s) = ∞ for
some s ∈ S+ \ SR, satisfy C(π1,inf , π2) = ∞, 2) There
exists a winning policy π1,fin for Player 1 that has
C(π1,fin, π2) < ∞, and 3) The payoff for each time step
is a convex, continuous function of Player 1’s action dis-
tribution and a concave, continuous function of Player
2’s action distribution. Due to these facts it is sufficient
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to consider only the stationary policies to find an equi-
librium policy pair (Patek & Bertsekas 1999). When
these conditions hold, Bellman’s optimality equation
leads to a unique fixed point, and there exists a station-
ary policy for a player that induces the optimal set of
occupancy measures and achieves Bellman optimality
when the other player’s policy is fixed 1 .

Proposition 8. For an identity concealment game IC,
if there exists a winning policy π1 for Player 1 for which

Prπ
1,π2

(♢SR|s0) = 1 for all π2 ∈ Π2, then there exists
an equilibrium pair (π1,∗, π2,∗) ∈ Π1,St,win × Π2,St of
policies such that

sup
π2∈Π2,St

C(π1, π2,∗) ≤ C(π1,∗, π2,∗)

and

C(π1,∗, π2,∗) ≤ inf
π1∈Π1,St,win

C(π1, π2,∗).

Proof of Proposition 8. We consider two cases, the equi-
librium value for the KL objective is finite and infinite.

We first consider the finite case. The existence of an
equilibrium follows from the conditions given in (Patek
& Bertsekas 1999): 1) All prolonging pairs (πinf,1, π2)

of policies for which
∑τ

t=0 Pr
πinf,1,π2

(st = s) = ∞ for
some s ∈ S+ \ SR, satisfy C(π1,inf , π2) = ∞, 2) There
exists a winning policy π1,fin for Player 1 that has
C(π1,fin, π2) < ∞, and 3) The payoff for each time step
is a convex function of Player 1’s action distribution and
a concave function of Player 2’s action distribution. We
show that these conditions hold for the identity conceal-
ment games and prove the existence of an equilibrium.

Without loss of generality, assume that Player 1 only
takes actions that are safe. Let Player 1’s actions A1(s)
be enumerated from 1 to |A1| and Player 2’s actions A2

be enumerated from 1 to |A2| for all s ∈ S. Denote the
n-dimensional probability simplex by ∆n.

Define a zero-sum two-player stochastic game Ĝ =
(S, Â1, Â2, P̂, s0,SR) with compact action spaces where

Â1 and Â2 are metric set of actions for Players 1
and 2, respectively. Player 1 and 2’s policies are π̂1

1 The game model in (Patek & Bertsekas 1999) has metric
action spaces and the convex-concave property of the pay-
off function is not needed. We consider a game model with
a finite set of actions and need the convex-concave property
to show that the deterministic policies are sufficient for the
equivalent game model with the metric action spaces. Con-
sequent the randomized policies are sufficient for the game
model that we consider. We discuss this implication in the
proof of Proposition 8.

and π̂2, respectively. At time t, Player 1’s decision

function is µ̂1
t : Ht → ∆|A1| and Player 2’s decision

function is µ̂2
t : Ht → ∆|A2|. Player 1 and 2’s feasi-

ble policies are Π̂1 and Π̂2, respectively. Let Π̂1,win

be the set of winning policies for Player 1 such that

Π̂1,win =
{
π1|minπ̂2∈Π̂2 Pr

π̂1,π̂2

(♢SR|s0) = 1
}
. We

define Â1, Â2, and P̂ such that the following is satisfied:

P̂(s, â1, â2, q) =

|A1|∑
i=1

|A2|∑
j=1

â1(i)â2(j)P(s, i, j, q)

for all s ∈ S, â1 ∈ Â1 = ∆|A1|, â2 ∈ Â2 = ∆|A2|, and
q ∈ S. Define payoff function ĉ(s, â1, â2) =

∑
a1∈A1 â1(i)

log
(
â1(i)/πAv(s, a1)

)
for all s ∈ S+\SR, ĉ(s, â1, â2) = 0

for all s ∈ SR, and ĉ(s, â1, â2) = ∞ for all s ∈ S \ S+.

We consider Ĝ with the objective function Ĉ(π̂1, π̂2) =

Eπ̂1,π̂2 [∑τ
t=0 ĉ(s, â

1
t , â

2
t )
]
where Player 1 is the mini-

mizer and Player 2 is the maximizer. Note that the
payoff function is a convex function of â1 and a con-
cave function of â2. We also note that by definition

Ĉ(π̂1, π̂2) = Eπ̂1,π̂2 [∑τ
t=0 ĉ(s, â

1
t , â

2
t )
]
is equal to the

value ofC(π1, π2) = E
[∑τ

t=0 KL(µ1
t (st)||πAv(st))

]
if for

all s ∈ S, t ≥ 0, we have µ̂1
t = [µ1

t (s, 1), . . . , µ
1
t (s, |A1|)]

and µ̂2
t = [µ2

t (s, 1), . . . , µ
2
t (s, |A2|)].

Due to Lemma 6 and the above equivalence between
the objective functions of IC and Ĝ, all prolonging pol-
icy pairs (π̂1,inf , π̂2) has an infinite objective value for
Player 1. Similarly, due to Lemma 6, there exists a policy
π̂1,fin that incurs a finite objective value for Player 1 for
all policies of Player 2. Note that by construction Ĝ and
ĉ, every policy pair (π̂1, π̂2) with Ĉ(π̂1, π̂2) < ∞ reaches
SR with probability 1. Also note that there exists a π̂2

for every π̂1 ∈ Π̂1 \ Π̂1,win that makes Ĉ(π̂1, π̂2) = ∞.

Hence, we limit the feasible policies of Player 1 to Π̂1,win.

Since all prolonging policy pairs incur an infinite objec-
tive value for Player 1 and there exists a policy π̂1,fin

that incurs a finite objective value for Player 1, by Propo-
sition 4.6 of (Patek & Bertsekas 1999), the equilibrium
value is unique and there exists an equilibrium policy
pair for Ĝ. Furthermore, there exists stationary pair
(π̂1,∗, π̂2,∗) ∈ Π̂1,St,win × Π̂2,St of policies which achieve
an equilibrium, i.e.,

sup
π̂2∈Π̂2

Ĉ(π̂1, π̂2) ≤ Ĉ(π̂1,∗, π̂2,∗) ≤ inf
π̂1∈Π̂1,win

Ĉ(π̂1, π̂2,∗).

We also note that the convexity of ĉ(st, â
1
t , â

2
t ) in â1 and

the concavity in â2 implies that the deterministic poli-
cies suffice for Player 1 and Player 2 in Ĝ. Since there
is a one-to-one mapping between the deterministic poli-
cies of Ĝ and all policies of IC, there also exists an equi-
librium stationary policy pair for IC, i.e., there exists
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(π1,∗, π2,∗) ∈ Π1,St,win ×Π2,St such that

sup
π2∈Π2

C(π1, π2,∗) ≤ C(π1,∗, π2,∗) ≤ inf
π1∈Π1,win

C(π1, π2,∗).

Restricting the policy spaces to stationary policies yields
the desired result. Note that SR is eventually reached
with probability 1 under this equilibrium policy pair
since the occupancy measures at S \ SR are finite.

Finally, consider the infinite case. Since the KL objective
function is infinite, we must have s0 ̸∈ S+ due to Lemma
6. Since there exists a stationary winning policy π1, but
s0 ̸∈ S+, it implies that all winning policies take an im-
permissible action with a positive probability. Let sta-
tionary policy π2 for Player 2 be equal to π2,trap for the
states in S \S+ and take actions uniformly randomly for
the states in S+. Every π1 ∈ Π1,win has C(π1, π2) = ∞
and Prπ

1,π2

(♢SR|s0) = 1. Hence, (π1, π2) is an equilib-
rium policy pair for every π1 ∈ Π1,win.

Remark 9. For clarity of presentation, we restrict the
feasible policy spaces of the players to Π1,St,win and
Π2,St. The equilibrium pair (π1,∗, π2,∗) ∈ Π1,St,win ×
Π2,St of policies from Proposition 8 also satisfy

sup
π2∈Π2

C(π1, π2,∗) ≤ C(π1,∗, π2,∗) ≤ inf
π1∈Π1,win

C(π1, π2,∗).

Knowing that the stationary policies suffice to find an
equilibrium policy pair, we can represent the payoff of
each step as a function of Player 1’s policy and find a
set of equilibrium policies via value iteration. Let π1(s)
and πAv(s) denote the vector of Player 1’s and average
player’s policies at state s, respectively. Also, let v(s)
denote the payoff-to-go at state s such that v(s) = 0 for
all s ∈ SR and v(s) = ∞ for all s ∈ S \S+. By the first-
order optimality conditions, for all s ∈ S \ S+, we have

v(s) = min
π1(s)

(
KL

(
π1(s)||πAv(s)

)
+

max
π2(s)

∑
q∈S

∑
a1∈A1(s)

a2∈A2(s)

P(s, a1, a2, q)π1(s, a1)π2(s, a2)v(q)

)

where the arguments of theminimum are the equilibrium
policies for Player 1. Similarly, by the first-order opti-
mality conditions, we can show that for all s ∈ S \ S+,
the equilibrium policies for Player 2 satisfy

π2(s) = arg max
π2′ (s)

∑
a1∈A1(s)

πAv(s, a1)

exp

( ∑
q∈S

a2∈A2(s)

P(s, a1, a2, q)π2′(s, a2)v(q)

)−1

.

6 Offline Learning of Player 2’s Policy

In this section, we give an algorithm to learn Player 2’s
policy and synthesize a near-optimal policy for Player 1.

Algorithm 1 takes the game model IC and n sample
runs (with infinite lengths 2 ) collected under the aver-
age player’s policy (Line 1). A potentially winning state
is known if there are a total of at least m sample transi-
tions from that state in the sample runs (Line 6). Oth-
erwise, the state is unknown. Let (i, j) denote the label
of the transition in the i-th sample run at time j. For
every known state s, we create an ascending order of the
sample transitions from s where the index of the sam-
ple runs has a higher priority. An example ordering is
(1, 0), (1, 3), (2, 1). For every known state, Algorithm 1
estimates Player 2’s policy using the first m action sam-
ples from that state as π2(s)(Line 7). In Algorithm 1, we
consider a modified game IC′ (Lines 8-9) where the un-
known states are also in the winning states. After con-
structing IC′, we solve for the optimal winning policy
π1,′ when Player 2’s policy is the estimated policy π2

(Line 10). The output policy π1 for the original game
IC is history-dependent and uses one-bit of extra mem-
ory compared to a stationary policy. The memory bit
tracks whether an unknown state has been visited yet.
The output policy π1 uses the optimal policy π1,′ (syn-
thesized in Line 10) against Player 2’s estimated policy
until reaching an unknown state. If an unknown state
has been visited in the history, the output policy uses
the average player’s policy.

Algorithm 1 considers a modified game where the un-
known states are also in the winning states. This game
construction ensures that the optimal value for the mod-
ified game is lower than that of the original game when
the respective sets of winning policies are considered.
After reaching an unknown state, Player 1 follows the
average player’s policy and induces zero KL divergence
payoff. The policy construction ensures that Player 1’s
policy has the same objective value for both the modi-
fied and the original games and, consequently, is near-
optimal for the original game. On the other hand, after
reaching an unknown state, Player 1 may not win the
original game since it does not necessarily take safe ac-
tions. While the learned policy may not be a winning
policy, we later show that reaching an unknown state
and losing the game happens with a low probability.

We define some notation before discussing the properties
of the algorithm. The equilibrium value C(π1,∗, π2,∗)
of the game is denoted by v∗. Note that there is
a unique value v∗ due to Proposition 8. Player 2’s
true policy is π2,◦. For a state s, the total num-
ber of collected sample transitions from s is m̂s,

2 Since Algorithm 1 utilizes only m samples per state, in
practice, we need to store at most mS transitions.
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Algorithm 1 Offline learning of Player 2’s policy and
policy optimization for Player 1

1: Input: An identity concealment game IC, n inde-
pendent sample runs under (πAv,π2,◦).

2: Output: A policy π1 for Player 1.
3: SK := ∅.
4: for s ∈ S+ do
5: if m̂s ≥ m then
6: SK := SK ∪ {s} .
7: Set π2(s) as the empirical distribution of first

m actions of Player 2 at state s.

8: SU := S+ \ SK , Send := SU ∪ SR.
9: Construct a modified identity concealment game IC′

that is the same as IC except that all states in Send

are absorbing, and Send is the set of winning states.
10: For IC′, synthesize the optimal stationary policy π1,′

using the estimated policy π2(s) for all s ∈ SK .
11: for t = 0, . . . do
12: For every ht = s0a

1
0a

2
0 . . . st, define µ1

t (ht) such

that µ1
t (ht) := π1,′(st) if si ∈ SK for all 0 ≤ i ≤ t,

and µ1
t (ht) := πAv(st) otherwise.

13: For IC, define the policy π1 := µ1
0µ

1
1 . . ..

and the empirical action frequencies for Player 2
using only the first m samples drawn from π2,◦ is
π2. Player 1’s optimal winning policy against π2,◦

is π1,◦, i.e., π1,◦ = argminπ1∈Π1,win C(π1, π2,◦) =
argminπ1∈Π1,win E

[∑τ
t=0 KL(µ1

t (ht)||πAv(st))|π1, π2,◦].
For S+, cmax denotes the maximum KL divergence
between the safe action distributions for Player 1
and the action distribution for πAv, i.e., cmax =
maxs∈S+,a1∈A1(log(πAv(s))−1 subject to a1 is safe.

We have the following assumption on Player 2’s policy.
Assumption 10 ensures tractability of estimation for the
transition probabilities.

Assumption 10. π2,◦ is stationary on S.

Algorithm 1 satisfies the requirements given in Problem
4 in two steps: 1) The objective value incurred by π1

is close to the optimal value for the known states since
Player 2’s policy will be estimated accurately for these
states. For the unknown states, π1 will incur 0 payoff
since π1 is the same with πAv for these states. Overall, the
KL objective value will be close to the optimal value un-
der π1. 2) If the number of sample runs is large enough,
unknown states are reached with low probability under
πAv. If the unknown states are visited with high proba-
bility under π1, then the objective value would be large
since the deviation of π1 from πAv would be large. How-
ever, since the KL objective function is near optimal, the
unknown states are visited with low probability under
π1, and the probability of losing is low for Player 1.

We define that a stationary policy pair (π1, π2) has an
(L, β′)-contraction, if mins∈S+ Pr

(
♢≤LSR ∪ SU |s0 = s

)

≥ 1 − β′. To show the near optimality of the output
policy, we make the following assumption, which ensures
the finiteness of the expected length of a game run.

Assumption 11. The policy pair (π1, π2) has an(
L, β − ε(1−β)2

cmaxL

)
-contraction where β is a constant

strictly lower than 1.

The validity of Assumption 11 can be checked af-
ter the termination of the algorithm since both π1

and π2 are known. If the assumption is violated, one
can increase β and rerun the algorithm. We remark
that β − (ε(1 − β)2)/(cmaxL) is an increasing func-
tion of β, and the policy pair (π1, π2) has to have
a (S, β − (ε(1 − β)2)/(cmaxS))-contraction for some
β < 1 since otherwise π1 has to incur infinite payoff.
Therefore, there always exists β < 1 that satisfies the
assumption. We note that having a contraction, e.g.,
a discount factor, is a common assumption in rein-
forcement learning to ensure the boundedness of the
objective function (Sutton & Barto 2018).

The following proposition shows that Algorithm 1 indeed
results in a near-optimal policy using only the game runs
collected under the average player’s policy.

Proposition 12. Let w = (v∗ + log(2) + ε)/λ. Under
Assumptions 1, 10, and 11, if

m ≥ 4c2maxL
4 (2 log(2)A+ log (2S/δ))

(1− β)4ε2

and
n ≥ e2w log (4/δ) /2 + 2Sewm

in Algorithm 1, then the output policy π1 satisfies

C(π1, π2,◦)− C(π1,◦, π2,◦) ≤ ε

and
Prπ

1,π2,◦
(♢SR|s0) ≥ 1− λ,

with probability at least 1− δ.

We use a series of lemmas to prove Proposition 12.
Lemma 13 shows that with high probability, the es-
timated action distribution π2 and the actual action
distribution π2,◦ are close for all known states 3 . The
proof follows Sanov’s theorem and Pinsker’s inequality
combined with the union bound (Weissman et al. 2003).

3 One can use all available sample transitions instead of the
first m samples. While this approach yields a concentration
bound of the same order (see Lemma 3 of (Karabag & Topcu
2018)) and may improve the estimates for some states, we use
only the firstm samples for every state since the performance
bound given in Lemma 14 requires uniform coverage.
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Lemma 13. For any δK ∈ (0, 1], given m independent
transitions sampled from π2,◦(s) for each s ∈ SK , with
probability at least 1− δK ,

∥∥π2,◦(s)− π2(s)
∥∥
1
≤
√

2(log(2)A+ log(S/δK))

m

for all s ∈ SK .

Lemma 14 shows that if the estimated and actual tran-
sition probability distributions are close, and the policy
pair (π1, π2,◦) has an L-step contraction, then the val-
ues of the objective function are close for (π1, π2,◦)
and (π1, π2). The paper (Strehl & Littman 2008)
showed this property for (1, β)-contractions. We ex-
tend this result to (L, β)-contractions and show that
difference between the value functions is bounded
by representing the KL objective as a sum of pay-
offs per time step. Since (π1, π2) has L-step contrac-
tion lower than or equal to β − ε(1− β)2/(cmaxL)
and ∥π2,◦(s) − π2(s)∥1 ≤ ε(1− β)2/(cmaxL

2) for all
s ∈ SK , then (π1, π2,◦) has (L, β)-contraction. Since
(π1, π2,◦) has (L, β)-contraction, the KL objective
value is bounded by

∑∞
i=0 Lcmaxβ

i = Lcmax/(1 − β)
from every initial state in S+ \ SR. Because the esti-
mated and true transition probabilities are close as in
Lemma 14, and (π1, π2,◦) has (L, β)-contraction, the

∥Γπ1,π2 − Γπ1,π2,◦∥1 is bounded by ε(1 − β)/(2Lcmax).
Since the KL objective value is bounded from every ini-
tial state and the distributions of game runs induced by
(π1, π2) and (π1, π2,◦) are close to each other, the KL
objective differs by at most ε/2.

Lemma 14. If ∥π2,◦(s)− π2(s)∥1 ≤ ε(1−β)2

cmaxL2 for all s ∈
SK ,

|C(π1, π2)− C(π1, π2,◦)| ≤ ε

2
.

The following lemmas show that the probability of los-
ing is low if the number of sample trajectories is high.
Lemma 15 shows that if a state is unknown, then the
probability of reaching that state is low. The proof is an
application of the Chernoff-Hoeffding inequality. We use
the fact that number of collected action samples from
a state is higher than the number of sample runs that
visit the state. Since the unknown states does not have
enough sample transitions, it implies that these states
are visited with a low probability.

Lemma 15. Let m̂D denote the number of transitions
from set D of states using n runs independently sampled
under policies (πAv, π2,◦). For m′ ≥ m̂D and 1/2 ≥ σ >
m′/n, with probability at least 1−2 exp(−2n(σ−m′/n)2),

we have Prπ
Av,π2,◦

(♢D|s0) ≤ σ.

Lemma 16 shows that if a state is reached with high
probability under π1 and with low probability under πAv,

then the value of the objective function is high. The
proof follows from that the KL divergence between the
distributions of game runs is lower bounded by the KL
divergence between the reachability probability to set
D by the data processing inequality. Since the unknown
states are visited with low probability under πAv, visiting
these states with high probability causes deviations from
the average player and incurs a high value for the KL
objective function.

Lemma 16. Let D ⊆ S. If Prπ
1,π2,◦

(♢D|s0) >
−(v∗+log(2)+ε)

log(Prπ
Av,π2,◦

(♢D|s0))
, then C(π1, π2,◦) > v∗ + ε.

The proof of Proposition 12 consists of two parts.We first
show that the learned policy π1 is near optimal. At the
unknown states, π1 is the same with the average player’s
policy πAv and incurs 0 payoff. Consider a modified iden-
tity concealment game where the unknown states are in-
cluded in the winning states. The equilibrium value of
the modified game is less compared to the original game.
For the known states, Player 2’s estimated policy will
be close to the true policy due to Lemma 13. Since the
estimated policy is accurate, π1 is near optimal for the
modified game. Thus, π1 is near optimal due to Lemma
14. To show that the probability of losing is small, we use
Lemmas 15 and 16. Since the ratio between the numbers
of sample paths and sample transitions is high enough,
Lemma 15 implies that the probability of reaching an
unknown state is bounded under πAv. Since π1 is near
optimal, the probability of reaching an unknown state is
also bounded under the learned policy due to Lemma 16.

Proof of Proposition 12. At time t define π1,◁ such that
π1,◁(s) := π1,◦(s) if si ∈ SK for all 0 ≤ i < t, and
π1,◁(s) := πAv(s) otherwise. For notational convenience,
define w := (v∗ + log(2) + ε)/λ.

By Lemma 13, if m ≥ 4c2maxL
4(2 log(2)|S2|+log( 2

δ ))
(1−β)4ε2 in Al-

gorithm 1, then with probability at least 1 − δ/2, we
have

∥∥π2,◦(s)− π2(s)
∥∥
1
≤ ε(1− β)2/(cmaxL

2) for all

s ∈ SK 4 . Then by Lemma 14, we have |C(π1,◁, π2,◦)−
C(π1,◁, π2)| ≤ ε/2 and |C(π1, π2) − C(π1, π2,◦)| ≤ ε/2
with probability at least 1 − δ/2. Since C(π1, π2) ≤
C(π1,◁, π2) due to the optimality of π1 against π2, we
have |C(π1,◁, π2,◦) − C(π1, π2,◦)| ≤ ε with probabil-
ity at least 1 − δ/2. We also have that C(π1,◁, π2,◦) ≤

4 The concentration bound given in in the lemma requires
independent transitions. However, the transition in the sam-
ple runs may not be independent in general. Despite the de-
pendent samples, the concentration bound can still be used
for our analysis. A detailed discussion on the dependence
of sample transitions and the use of this bound is given in
(Strehl & Littman 2008). Alternatively, one can use a con-
centration bound that can handle dependent transitions and
random stopping times (e.g., Lemma 3 of (Karabag & Topcu
2018)) and get the same order of convergence.
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C(π1,◦, π2,◦) since π1,◦ and π1,◁ induce the same payoff
until reaching an unknown state, and π1,◦ induces a non-
negative payoff after reaching an unknown state whereas
π1,◁ induces 0 payoff after reaching an unknown state.
Consequently, with probability at least 1− δ/2, we have

C(π1, π2,◦) ≤ C(π1,◦, π2,◦) + ε.

We now show that if n/m ≥ e2w log (4/δ) /2m + 2Sew

and m is as above, Prπ
1,π2

(♢SR|s0) ≥ 1 − λ with
probability at least 1 − δ/2. Let SU be the set of un-
known states. Define y := ew log (4/δ)/(2mS) and
c := y + 2. We have n/m ≥ Scew. Also define
c′ :=

(
y +

√
y
√
y + 4 + 2

)
/2. Note that y ≥ 0 and

c ≥ c′ ≥ 1. The number of sample transitions from SU

is lower than mS by the definition. By Lemma 6, with
probability at least 1 − 2 exp

(
−2n(1− 1/c)2e−2w

)
, we

have Prπ
Av,π2,◦

(♢SU |s0)≤ e−w. Since c ≥ c′ ≥ 1, we have

2 exp (−2n( c−1
c

)
2e−2w

)
≤ 2 exp (−2mSc′( c′−1

c′

)
2e−w

)
= δ/2. Thus, we have Prπ

Av,π2,◦
(♢SU |s0) ≤ e−w with

probability at least 1− δ/2.

If C(π1, π2,◦) ≤ C(π1,◦, π2,◦)+ ε, we have C(π1, π2,◦) ≤
v∗ + ε since C(π1,◦, π2,◦) ≤ v∗. By Lemma 7, the prob-

ability Prπ
1,π2,◦

(♢SU |s0) ≤ λ with probability at least

1−δ since Prπ
Av,π2,◦

(♢SU |s0) ≤ e−w with probability at
least 1 − δ/2. Since Player 1 can lose the game only by
reaching an unknown state, the probability of losing is
at most λ with probability at least 1− δ/2.

Combining the near-optimality result for the objective
function and the result for the probability of losing, we
conclude that π1 satisfies

C(π1, π2,◦) ≤ C(π1,◦, π2,◦) + ε.

and
Prπ

1,π2

(♢SR|s0) ≥ 1− λ

with probability at least 1− δ.

7 Numerical Examples

In this section, we give numerical examples of the equi-
librium policies for identity concealment games and of-
fline policy optimization for Player 1.

7.1 Detection of Hostile Clients in Cyber Interactions

We show the effect of identity concealment on the detec-
tion of hostile clients in the cyber interaction scenario
shown in Figure 1. The game is played between a client
(Player 1) and the server (Player 2), and the states rep-
resent the remaining times for the client’s processed re-
quests, if there are any. At every time, the client can
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Figure 3. Receiver operating characteristic curve of the like-
lihood ratio classifier that identifies hostile clients. True pos-
itive rate is the ratio of detected attackers to all attackers.
False positive rate is the ratio of real clients identified as an
attacker to all clients.

disconnect, make a request, or wait. The server can ac-
cept or reject the client’s potential request. However, the
server cannot reject the request again if the client has
been rejected previously for that request. If the request
is accepted, it takes a certain number of steps to process
the request. The attacker’s goal is to cause a denial of
service by overwhelming the server, and it wins the game
if and only if the server concurrently processes multiple
requests of the client. At every state, the real clients’ pol-
icy, i.e, the average player’s policy, is randomized, and is
more likely to make a request if there are no requests be-
ing processed or there is a rejected request. The details
of the setting are given in (Karabag et al. 2021b).

In Figure 3, we observe that when the server uses its
equilibrium policy π2,∗, hostile clients are identified with
high accuracy compared to policy π2,U that accepts or
rejects the requests with equal probabilities. This is be-
cause, unlike π2,U , the equilibrium policy π2,∗ is state-
dependent, and using π2,∗ the server can drive the game
into a state where the hostile client’s behavior is differ-
ent from the real clients’ behaviors. Similarly, a hostile
client is less likely to be detected when it uses its equi-
librium policy π1,∗ compared to the greedy policy π1,G

that makes a request at every time step. We also observe
that an additional interaction, i.e., a game run, improves
the accuracy of classification as explained in Section 4.

7.2 Equilibrium Policies for a Pursuit-Evasion Game

We show the behavior for hostile Player 1 in a pursuit-
evasion game. Player 1 is an evader and Player 2 is a pur-
suer. The environment is a two-dimensional grid where
each node represents an intersection. At each time step,
every intersection is occupied with probability 0.5. If the
pursuer’s intersection is clear, it can move in +x, −x,
+y, −y directions by 1 or stay at its current intersec-
tion. If the intersection is occupied, the pursuer stays.
Regardless of the state of its intersection, the evader can
move in all directions by 1 or 2 blocks, or stay at the
current intersection. We encode the states of the game
using the relative distances on x and y coordinates be-
tween the players, the states of the evader’s intersection,
and the state of the pursuer’s intersection. If the block
distance between the players is 6 or more the evader wins
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Table 1
The policies of the average and hostile evaders. O denotes
an occupied intersection and C denotes a clear intersection.

Probability of Action

Evader

Type
State Stay x 2x y 2y -y -2y -x -2x

Intersection

Occupied
0.80 0.10 0 0.05 0 0.05 0 0 0

Average Intersection

Clear
0 0.40 0.10 0.20 0.05 0.20 0.05 0 0

(2,0,C,C) 0 0.41 0.23 0.12 0.06 0.12 0.06 0 0

(1,0,C,C) 0 0.31 0.33 0.09 0.09 0.09 0.09 0 0

(1,0,O,C) 0 0.62 0 0.19 0 0.19 0 0 0
Hostile

(1,0,O,O) 0.74 0.16 0 0.05 0 0.05 0 0 0

the game, and if the block distance is 0, the pursuer wins
the game, i.e., traps the average evader.

The average player’s policy only depends on whether its
intersection is occupied and is given in Table 1. If the
intersection is occupied, with high probability the aver-
age player waits the intersection to be cleared and with
low probability the average player “illegally” crosses the
intersection. If its intersection is clear, with high prob-
ability the average player moves with a normal speed,
otherwise it “overspeeds”, i.e., moves by 2 blocks.

The equilibrium policy of the hostile evader is given in
Table 1 for some states. If the evader is close to the pur-
suer, for instance at state (1, 0, C, C), the evader tends
behave more suspiciously by “overspeeding”. When the
distance is higher, for instance at state (2, 0, C, C), the
evader does not flee and behaves more closely to the aver-
age player. Similarly, the hostile evader chooses to move
at state (1, 0, O,C) since otherwise the evader may get
caught. On the other hand, the hostile evader chooses to
stay at state (1, 0, O,O) with high probability since the
pursuer has to wait. Overall, the hostile evader behaves
dissimilar to the average player only if it is in a danger-
ous position, which matches the intuition of concealing
the identity by behaving in an unsuspicious way.

7.3 Offline Learning of the Pursuer’s Policy

In this example, we show the empirical performance of
the proposed offline learning algorithm for different num-
ber of sample runs n and number of estimation samples
m per state. Note that we do not give optimality guaran-
tees for the demonstrated values of m and n. We use the
same environment with the previous example where the
initial state s0 is (1, 0, O,O.). The pursuer’s policy π2,◦

is defined as follows. At each time step the pursuer stops
tracking the evader, and the evader wins with proba-
bility 0.2. If the pursuer does not stop, it takes allowed
actions with uniform probabilities.

In Figure 4a, we observe that the evader is able to learn
the pursuer’s suboptimal policy and lower the objective
function compared to the equilibrium value of the game.
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Figure 4. The value of the objective function and the prob-
ability of losing for different values of m and n. The dashed
line in (a) marks the value of the objective function for the
optimal winning policy. The dashed line in (b) marks the
probability of losing under the average player’s policy.

For lower values of n/m, the value of the objective func-
tion is lower than the value of the objective function un-
der the optimal safe policy. If n/m is lower, then fewer
states become known and the hostile evader reaches un-
known states with higher probabilities. Resultingly, the
evader follows the average player’s policy and incurs 0
payoff, which lowers the value. When m = 3 × 105 and
n = 105, all states are unknown, and the output policy
is equal to the average player’s policy. In Figure 4b, if
n/m is low, then the probability of losing is high for the
hostile evader since it follows the average player’s policy
with high probability. In fact, for some values of n/m the
probability of losing is higher than the probability that
the average player loses the game. This result matches
the intuition behind Lemma 16 and the n/m ratio given
in Proposition 12: The learned policy may reach un-
known states with higher probability compared to the
average evader’s policy, and to ensure that the probabil-
ity of losing is low, the n/m should be sufficiently high.

8 Conclusion

We formalized the notion of identity concealment zero-
sum games and defined identity concealment games. We
showed that there exists a stationary equilibrium policy
pair for identity concealment games. We then showed
that a hostile player can learn a near optimal policy if
the opponent is not following an equilibrium policy. In
detail, we presented an algorithm that solely uses a finite
number of game runs collected under the average player’s
policy. The output of the algorithm is a policy for the
player that guarantees near optimality in the identity
concealment objective and the probability of winning.
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A The Proofs for Technical Results

Complete versions of the proof sketches are available at
(Karabag et al. 2021b) due to the lack of space.

We use technical Lemmas 17 and 18 to prove Lemma 7.

Lemma 17. Let D be a discrete probability distribution
such that D(n) ≥ 0 if n ∈ N and D(n) = 0 otherwise,
and let c1, c2 ∈ (0,∞) be arbitrary constants. Define set
D such that n ∈ D if and only if D(n) > c1 exp(−nc2).
If
∑∞

n=0 D(n)n = ∞, we have

∑
n∈D

D(n) log

(
D(n)

c1 exp(−nc2)

)
= ∞.

Lemma 18. For all n ≥ 0, the optimal value of
min

x,y∈Rn
KL(x||y) subject to 0 ≤ xi ≤ yi for all i ∈ [n] and∑n

i=1 yi ≤ c, is −c exp(−1).

Proof of Lemma 7. We partition N into three disjoint
sets D1, D2, and D3 where n ∈ D1 if D1(n) ≤ D2(n) ≤
c1 exp(−c2n), n ∈ D2 ifD2(n) < D1(n) ≤ c1 exp(−c2n),
and n ∈ D3 if D2(n) ≤ c1 exp(−c2n) < D1(n).

We first lower bound the KL divergence on subsets D1

and D2. For subset D1 we have

∑
n∈D1

D2(n) ≤
∞∑

n=0

D2(n) ≤
∞∑

n=0

c1
exp(c2n)

=
c1

exp(c2)− 1
.

By Lemma 18, we have

∑
n∈D1

D1(n) log

(
D1(n)

D2(n)

)
≥ − c1 exp(−1)

exp(c2)− 1
(A.1)

sinceD1(n) ≤ D2(n) for all n ∈ D1 and
∑

n∈D1
D2(n) ≤

c1
exp(c2)−1 . For subset D2 we have

∑
n∈D2

D1(n) log

(
D1(n)

D2(n)

)
≥ 0 (A.2)

sinceD2(n) < D1(n) and consequentlyD1(n) log
(

D1(n)
D2(n)

)
> 0 for all n ∈ D2.

Therefore, KL(D1||D2) is equal to

∞∑
n=0

D1(n) log

(
D1(n)

D2(n)

)
(A.3a)

=
∑
n∈D1

D1(n) log

(
D1(n)

D2(n)

)
+
∑
n∈D2

D1(n) log

(
D1(n)

D2(n)

)
+
∑
n∈D3

D1(n) log

(
D1(n)

D2(n)

)
(A.3b)

≥ − c1 exp(−1)

exp(c2)− 1
+
∑
n∈D3

D1(n) log

(
D1(n)

D2(n)

)
(A.3c)

≥ − c1 exp(−1)

exp(c2)− 1
+
∑
n∈D3

D1(n) log

(
D1(n)

c1 exp(−c2n)

)
(A.3d)

where (A.3c) is due to (A.1) and (A.2), and (A.3d) is
due to D2(n) ≤ c1 exp(−c2n).

We note that n ∈ D3 if and only if D1(n) >
c1 exp(−c2n), and

∑∞
n=0 D1(n)n = ∞. By Lemma 17,

we have
∑

n∈D3
D1(n) log

(
D1(n)

c1 exp(−c2n)

)
= ∞. There-

fore, KL(D1||D2) = ∞.

Proof sketch for Lemma 13. By Lemma 14 of (Strehl
et al. 2009), with probability at least 1− δk/S, we have

∥π2(s) − π2,∗(s)∥1 ≤
√

2(log(2A−2)+log(S/δk))
m . Combin-

ing this with a union bound over SK , we get the desired
result.

Proof sketch for Lemma 14. We first establish that

if the policy pair (π1, π2) has
(
L, β − ε(1−β)2

cmaxL

)
-

contraction, and ∥π2(s) − π2,◦(s)∥1 ≤ ε(1−β)2

cmaxL2 for all

s ∈ SK , then (π1, π2,◦) has (L, β)-contraction. We show
this property by induction, noting that the flow differ-

ence under these two policies is at most ε(1−β)2

cmaxL
at every

L-steps. Next, we show |C(π1, π2)−C(π1, π2,◦)| ≤ ε/2.

Since ∥π2(s) − π2,◦(s)∥1 ≤ ε(1−β)2

cmaxL2 , the flow difference

under policy pairs (π1, π2) and (π1, π2,◦) is bounded

by ε(1−β)
2cmaxL

. Since (π1, π2,◦) has (L, β)-contraction, the
different flow eventually reaches an end state and incurs
0 payoff. Due to (L, β)-contraction and the bounded
payoff cmax, this flow difference incurs at most ε/2
difference in the value functions.

Proof of Lemma 15. Let m̂unq
D denote the number of
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sample runs that contain a transition from D. By Cher-
noff’s inequality, we have

Pr
(∣∣∣PrπAv,π2,∗

(♢D|s0)− m̂unq
D /n

∣∣∣ ≥ σ − m̂unq
D /n

)
≤ 2 exp

(
−n (σ − m̂unq

D /n)
2
/2
)

where the outer probability is over the randomness of
sample paths.

Note that m̂unq
D ≤ m̂D ≤ m′ since m̂unq

D is the number
of paths with a transition from D and m̂D is the total
number of transitions from D. Therefore, we have

Pr
(
Prπ

Av,π2,∗
(♢D|s0) ≥ σ

)
≤ Pr

(∣∣∣PrπAv,π2,∗
(♢D|s0)− m̂unq

D /n
∣∣∣ ≥ σ − m̂unq

D /n
)

≤ 2 exp
(
−n (σ − m̂unq

D /n)
2
/2
)

≤ 2 exp
(
−n (σ −m′/n)

2
/2
)

which yields the desired result.

Proof of Lemma 16. Let ρ1 = Prπ
1,π2,◦

(♢D|s0) and

ρAv = Prπ
Av,π2,◦

(♢D|s0). Note that C(π1, π2,◦) =
KL

(
π1, π2,◦||πAv, π2,◦) ≥ KL

(
Ber

(
ρ1
)
||Ber

(
ρAv
))

due to the data processing inequality. Therefore, it suf-

fices to show that if ρ1 > ρAv and ρ1 > v∗+log(2)+ε
− log(ρAv)

, then

KL
(
Ber

(
ρ1
)
||Ber

(
ρAv
))

> v∗ + ε.

We have

KL
(
Ber

(
ρ1
)
||Ber

(
ρAv
))

(A.6a)

= ρ1 log

(
ρ1

ρAv

)
+
(
1− ρ1

)
log

(
1− ρ1

1− ρAv

)
(A.6b)

≥ ρ1 log

(
ρ1

ρAv

)
+
(
1− ρ1

)
log
(
1− ρ1

)
(A.6c)

≥ −ρ1 log
(
ρAv
)
− log(2) (A.6d)

where (A.6d) is because of that minx log(x) + (1 −
x) log(1− x) subject to x ∈ [0, 1] is − log(2). We get the
desired result by rearranging the terms in (A.6d).

Proof of Lemma 17. Fix arbitrary constants c1, c2 ∈
(0,∞). We partition N into three disjoint subsets
D1, D2, and D3 such that n ∈ D1 if and only
if D(n) ≤ c1 exp(−nc2), n ∈ D2 if and only if
c1 exp(−nc2) ≤ D(n) < c1 exp(−nc2/2), and n ∈ D3

otherwise. Also define D := D2 ∪D3.∑
n∈D1∪D2

D(n)n ≤
∑

n∈D1∪D2
c1 exp(−nc2/2)n

≤
∑∞

n=0 c1 exp(−nc2/2)n = c1 exp(c2/2)
(exp(c2/2)−1)2 < ∞ since

c1, c2 ∈ (0,∞).

Since D(n)n ≥ 0 for all n ∈ N, we have

∞∑
n=0

D(n)n =
∑

n∈D1∪D2

D(n)n+
∑
n∈D3

D(n)n.

Since
∑∞

n=0 D(n)n diverges and
∑

n∈D1∪D2
D(n)n con-

verges, we must have
∑

n∈D3
D(n)n = ∞.

We have∑
n∈D

D(n) log

(
D(n)

c1 exp(−nc2)

)
(A.7a)

=
∑

n∈D2∪D3

D(n) log

(
D(n)

c1 exp(−nc2)

)
(A.7b)

≥
∑
n∈D3

D(n) log

(
D(n)

c1 exp(−nc2)

)
(A.7c)

≥
∑
n∈D3

D(n) log

(
c1 exp(−nc2/2)

c1 exp(−nc2)

)
(A.7d)

= ∞ (A.7e)

where (A.7c) is due to D(n) ≥ c1 exp(−nc2) for all n ∈
D2, (A.7d) is due to ≥ c1 exp(−nc2/2) for all n ∈ D3,
and (A.7e) is due to

∑
n∈D3

D(n)n = ∞ and c2 > 0.

Proof sketch for Lemma 18. The proof follows from the
convexity of KL divergence and the first-order optimality
condition.
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