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Optimal Planning on a Single-Route Transit System with Modular Buses

Karan Jagdale, Zaid Saeed Khan, Mdnica Menéndez, and Melkior Ornik

Abstract— This paper considers optimal planning of modular
buses on a single route to minimize the average passenger travel
time. Modular vehicles consist of individual units that can
attach and detach from other modules at any stop, allowing
for increased flexibility. As the passenger demand and the
travel time between stops are stochastic variables, we use a
Markov decision process to model the system. The problem
of minimizing passenger travel time is converted to optimally
planning the actions of all the vehicles, which include stopping
at a stop, skipping the stop, and attaching or detaching from
other modules. We develop a cost formulation to capture the
impact of these actions on passenger travel time, and propose
a control policy that selects an action with the minimum cost.
To evaluate our proposed policy, we compare it in simulation
with two other policies: when vehicles serve every stop without
attaching or detaching, and a previously proposed rule-based
attaching/detaching policy. Our proposed policy significantly
outperforms both of these strategies.

I. INTRODUCTION

Bus transit in urban regions involves a multitude of
stochastic features, including passenger loads and the vari-
able travel times caused by traffic conditions such as con-
gestion and traffic signals. Planning under this stochasticity
often leads to a phenomenon of bus bunching [1]. Namely,
a bus whose distance from the preceding bus is shorter than
intended will on average board fewer passengers. The shorter
boarding time further decreases its headway, resulting in in-
creasingly uneven passenger distribution among buses. Buses
with shorter headways will be thus underutilized, while those
with longer headways will be overutilized, eventually leading
to some passengers being unable to board the bus due to
capacity constraints. Additionally, some passengers may face
extremely long wait times at the bus stop.

Previous studies and practices have proposed various
strategies to optimize passenger travel time and prevent
bunching. These strategies include bus holding [2], where
some buses are held longer at different stops to increase short
headways, stop skipping [3], where certain stops are skipped
to decrease long headways, and bus insertion [4] or substi-
tution [5] where standby buses are inserted at specific stops
to split long headways. While these strategies are shown to
mitigate bus bunching, they all suffer from drawbacks: a bus
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holding strategy only slows down an early bus but cannot
speed up a bus which is late, while stop skipping cannot
slow down an early bus. Bus insertion requires a larger fleet
size, resulting in higher costs.

In addition to classical routing strategies, recent work
introduced policies based on the emergent framework of au-
tonomous modular vehicles (AMVs) [6]. AMVs can quickly
join with each other while on the road, forming a larger
vehicle with higher capacity. Once joined, passengers can
move from one module to another, and the modules can
split when beneficial. Utilizing this modularity, [7] and [8]
investigated the joint optimization of an AMV system’s
dispatch headway and vehicle capacity. Similarly, [9] used
the concept of “in-motion transfer” to evaluate the benefits
of the modular bus system in large-scale urban networks.
Most importantly, [10] proposed a rule-based bus-splitting
policy to decrease the average passenger travel time using the
modular bus system, and [11] combined it with bus holding
to improve its performance.

Taking the motivation from previous work on AMVs, this
paper proposes a planning strategy for modular vehicles that
takes into account the relative significance of different stops
in terms of passenger arrival rates. We use the notion of a
Markov decision process (MDP) to model the underlying
system, with states that include the locations, loads, and
other salient properties of all modules. The problem of
minimizing passenger travel time is then reduced to that of
optimal planning on an MDP. The cost of different actions
in the given state is formulated to capture the effects of
those actions on average travel time. Depending on the state,
available actions include stopping at the upcoming stop,
skipping the stop, splitting into two modules, and joining
with other modules. The costs are computed using the current
state of the system and parameters specific to bus stops
such as passenger arrival and alighting rates. At each time
step, the strategy commands the modules to implement the
actions which correspond to the minimum cost. The proposed
policy’s performance is compared extensively against — and
shown to outperform — the rule-based policy proposed by
[10] and a policy where all buses serve all stops as in the
traditional bus transit system.

II. PROBLEM FORMULATION

We consider a single-route passenger transportation sys-
tem composed of n modular vehicles. In the rest of the paper,
a module refers to a vehicle that cannot split further, whereas
bus refers to a vehicle that is formed by joining multiple
modules. We use vehicle to refer generally to both modules
and buses.



While autonomous modular vehicles can actually join
and detach while moving [6], in this paper we consider
a conservative scenario that allows this maneuver only at
the bus stops. When the modules are joined, they create
an open common area, allowing passengers to walk from
one module to another. We assume that no more than two
modules can be joined at any given time and no more than
one vehicle can serve a stop at a time. We recognize that the
technical assumption of only two modules joining is limiting
and does not allow us to fully reap the benefits of a modular
framework. Yet, as we will show, strategies that make use
of modularity significantly outperform classical plans even
under such a constraint.

In addition to attaching and detaching at bus stops, ve-
hicles can also choose to skip a stop when it is beneficial
to the overall system performance, even if some passengers
wish to board or disembark there.

The vehicles are assumed to operate on a single route in
the form of a loop with m stops. We assume that, as in
many high-frequency urban transportation systems [12], the
bus schedule is not publicly available, and the number of
passengers arriving at the bus stops does not depend on the
actions taken by the vehicles. Under this setting, we consider
the problem of finding a strategy for module joining, splitting
and stop skipping that minimizes the average travel cost of
passengers. The travel time of a passenger consists of three
elements — waiting time at their origin stop, time spent
traveling inside the vehicle (in-vehicle time), and the time
spent walking back to the destination stop if the vehicle has
skipped their destination stop. Thus, we define the average
travel cost as a weighted sum of average waiting, walking,
and in-vehicle time with weights wqit > 1, Wy > 1 and
1, respectively.

While the definition of travel cost through weighted travel
element times is motivated by the work of [13] and used
in recent work including [10], [11], we recognize that an
attempt to capture the greater valuation of walking and
waiting time is simplistic, particularly for passengers with
limited mobility. A possible way to partially accommodate
this issue is to announce a stop skipping action slightly ahead
of time, allowing passengers to get off or change buses at
an earlier stop. However, for simplicity we proceed without
such an model in this paper.

We provide a more rigorous definition of the above
problem after formally describing the system as a Markov
decision process in Section III.

III. SYSTEM MODEL

We begin with modeling the bus system using a discrete-
time Markov decision process [14]. While we recognize that
the underlying system is naturally continuous in time, we
use discrete time steps in order to simplify modeling and
develop a policy suitable for implementation.

A. Markov Decision Process Environment

A Markov decision process (MDP) consists of three pri-
mary components: state space, i.e., the set of all possible

system states, action set, i.e., the set of actions available
to the system at every time, and fransition function, i.e.,
a function determining the transition probabilities from one
state to another, given a system action. We describe the three
components below.

If there are N vehicles present at a given time step —
noting that the number of vehicles changes as they split and
join — we denote the state of vehicle i by (s;,1;, i, Ji, ti)s
where s; is the location of the vehicle, defined as the last
stop which the vehicle has visited, [; is the vehicle’s current
passenger load, ¢; and j; are binary variable indicating
whether the vehicle is currently at a stop and whether it
is formed by attaching two modules, respectively, and ¢; is a
variable indicating the minimum remaining time to reach the
next stop — if the vehicle is not at a stop — or the minimum
remaining time left before it can leave the stop, either due to
serving passengers or due to waiting for the next vehicle to
join with it. The overall state of the system is composed of
the states of each vehicle, as well as the auxiliary variables
such as the number of passengers waiting at each stop and
headway, described below.

We now elaborate on the actions available to the vehicles.
Before a vehicle reaches the next stop, the available actions
are stop — the vehicle stops at the stop and lets the
passengers board and alight, skip — the vehicle does not
stop at the stop and continues onwards, and split — the
vehicle splits at the stop; the front module skips the stop and
the rear module stops at the stop. Naturally, the split action
is available only if the vehicle is a bus with two modules.
If a vehicle is at a stop and all passengers have boarded,
its available actions are next — the vehicle leaves for the
next stop, and join — the vehicle waits for the following
module and attaches to it when that module reaches stop s.
The join action is available only if the vehicle leaving the
stop and the vehicle following it are both individual modules.
For simplicity, we do not allow a vehicle to remain at a stop
after all passengers have boarded unless it is waiting to join
another module.

To describe the system’s transition function, i.e., dynamics,
we first introduce some notation. The passenger capacity
of each of n identical modules is denoted by K. The per-
passenger boarding and alighting times are denoted by (5 and
«. We assume that passengers board and alight concurrently.
A fixed amount of time E is lost at a stop due to acceleration,
deceleration, opening, and closing of the doors. Largely for
notational simplicity, we assume that vehicles are prevented
from overtaking each other. Let the vehicle behind and in
front of vehicle i be denoted by ¢t and i, respectively.
Thus, it = i+1 when i # n, if i = n, i™ = 1. We define i~
analogously. Similarly, sT and s~ denote the stops following
and preceding stop s, respectively.

We define la; s as the number of leftover alighting passen-
gers in vehicle ¢ when it reaches stop s, i.e., the number of
the passengers who could not alight at s~ due to the vehicle
skipping it. Similarly, we define lo; ; as the passengers
waiting at stop s at that time who could not board vehicle
1~, either due to its limited capacity or because it had



skipped stop s. Suppose tas; and td; s are the arrival and
departure times of vehicle ¢ to/from stop s respectively. We
define the arriving and departing headway of vehicle ¢ by
ha; s = ta; s—ta;- 5 and hd; s = td; s —td;- g, respectively.
We are now ready to describe the probability distributions
that drive the system dynamics.

B. Uncertainty

We recognize two sources of uncertainty: in the arrival of
passengers to a stop and in vehicle travel times.

Passenger load uncertainty. We use the same specifications
described in [10]. We assume that passengers arrive at stop
s with a fixed rate A; per second following a Poisson
process [15]. Thus, the number of passengers arriving in time
interval of length T at stop s is distributed as Poisson(T'\y).
Hence, when vehicle ¢ arrives at stop s, the total number of
passengers waiting at the bus stop is distributed as

pa; s ~ Poisson(Asha; s) + lo; 5. (D

We assume that stop s is the destination of each passenger on
the bus with probability ps. Thus, the number of passengers
alighting from the vehicle ¢ as stop s is given by

pd;. s ~ Binomial(l; s — la; 5,ps) + la; 5. 2)

After the passengers have alighted, the load of the vehicle,
excluding passengers boarding the vehicle at stop s, is given
by l; = li s —pd; s, and the number of passengers boarding
the vehicle is given by pb; s = min(pa; s, 29 K — l;}s).

Travel time model. Let V,,.;, be the average cruising speed
of the vehicle, which is assumed to be the same whether it is
a bus or an individual module. If D, is the distance between
stop s and s™, we assume that the travel time to go from
stop s to stop sT is

Cs :DS/VU€h+€S7 (3)

where €, is a Gamma-distributed zero-mean error €5 ~
Gamma(k, 0) — k0, and &, 0 are the standard parameters of
the Gamma distribution, chosen to model a realistic degree
of stochasticity.

We now proceed with defining the action-driven state
transitions.

C. State Dynamics

When vehicle ¢ reaches a stop, s; is updated to s:“.

Variable ¢; is set to 1 when vehicle ¢ reaches a stop and
is set to 0 when vehicle ¢ leaves a stop. Similarly, we set j;
to 0 if the vehicle ¢ splits and set it to 1 if the vehicle 7 joins
to another vehicle. We now elaborate on the transitions of
the other state variables.

Action stop. After completing passenger boarding and
alighting, the load of the vehicle is updated as I; o+ =
l;;s — pdi s + pb; s. and the leftover passengers at stop s
are given by

loj,s = pa;,s — pbi.s. €]

As vehicle ¢ is allowing passengers to alight at stop s, the
number of leftover alighting passengers for the next stop s+
is given by la; s+ = 0.

We define tp; s as the delay faced by vehicle ¢ when it
reaches stop s due to the previous vehicle ¢~ still being at
the stop. If the previous vehicle departed stop s by the time
vehicle ¢ reaches the stop, then tp; ; = 0. The time duration
after which vehicle ¢ is able to leave stop s is given by

ti,s = tpi,s + max(apd; s, Bpbis) + E. )

Adding tp; , in equation (5) ensures that vehicle ¢ does not
overtake the vehicle in front and it is consistent with our
assumptions that only one vehicle can serve a stop at a time.

Action skip. In this case, vehicle ¢ does not serve the stop s.
Hence, the passenger load of the vehicle remains the same,
ie., l; s+ = l; s, and the leftover alighting passengers for
the next stop s* are given by la; .+ = pd; . The leftover
passengers at the stop s for vehicle ™ reaching stop s are
given by lo;+ s = pa; . The time duration after which the
vehicle 4 can leave stop s is given by ¢; ; = tp; s, ensuring
that vehicle 7 does not overtake the vehicle in front.

Action split. The passengers are redistributed between the
two joined modules before splitting the bus, with passengers
who intend to alight at stop s moving — capacity permitting
— to the trailing module, which will stop at s, and others
moving — again capacity permitting — to the front module,
which will skip s. Namely, let [f; ; and [b; s denote loads
of the leading and trailing modules after redistributing the
passengers. Let 1 denote the indicator function, i.e., 1.y =1
if condition (-) is true and 1.y = 0 otherwise. Then, Ib; s =
pag, o> K + 1pa, . <xpdis and Uf; s = 1y, >k K +
1y, o<k (liys — 1bis).

The leftover alighting passengers that cannot fit in the
trailing module and are left in the leading module are denoted
by laf; s and are given as laf; s = 1pq, >k (pdis — K).
The time taken at stop s for the leading and trailing
modules of the vehicle i is denoted by tf; s and tb; g,
respectively, and is given by tf; s = tp;s and tb;, =
tpi.s + maz(apd; s, fpb; s) + E.

After implementing the split action the leading module
becomes vehicle 4, trailing module becomes vehicle i+ and
all the remaining vehicles behind the trailing module shift
by a unit. Similar to the case of the stop action, the number
of leftover passengers at stop s is given by equation (4).

Action join. The bus formed by joining module ¢ and
module T is the new vehicle 4, and the indices of all
trailing vehicles are decremented by 1. We add the loads
and the leftover alighting passengers of the modules and
associate them with index <. Thus, l; ; := l; s + l;+ 5, and
lai s :=la; s +la;+ . Let td; , be the time at which vehicle
i performed the join action. Note that td; . is different
from td; s, which is the time when vehicle ¢ will leave
stop s. Then, the time spent by vehicle ¢ at stop s is
equal to the waiting time for the trailing module, given by
tis = ta+ ¢ 1+ s — tdgﬁs, where t;+ , is the time duration

for which module it stops at stop s.



Action next. If the vehicle uses the next action, it leaves
for the next bus stop. Noting that we do not allow vehicles
to overtake each other, the time duration for which vehicle
i travels between stops s and s* is given by tc;, =
max(cs,cp; s), wWhere ¢, is given by (3) and cp; s is the
remaining travel time for the downstream vehicle to reach
stop s* if it has not already done so.

Having defined the relevant Markov decision process, we
can now describe the problem of optimal policy design.

D. Optimal Planning Problem

Consider a Markov decision process M described above,
noting that we restrict the set of available actions to only
those that are possible at a given state — e.g., split is
not possible if the modules are not joined. A deterministic,
stationary policy m of an MDP assigns an action to be
performed when the system is at given state. We denote the
set of all possible deterministic, stationary policies by I1(M).
Let T i, Topais Loy, denote the average of the waiting,
walking, and in-vehicle time, respectively, across all passen-
gers given a particular policy 7 and some relevant finite time
interval. Let wyyqit, Wywarr be the waiting time and walking
time weights as described in the Section II. The problem
considered by this paper is thus to find a policy 7* such that
" = arg ming () Ton + Wwait Tygir + Wwalk T -

With a formal presentation of the MDP setting and the
problem statement, we proceed to describe the proposed
approach to approximately solve the stated problem.

IV. PROPOSED APPROACH

Owing to the complicated and stochastic nature of the
relationship between a policy and passenger waiting, walk-
ing, and in-vehicle times, the problem of minimizing 77 ; +
Wuwait Lpgit T Wwalk gy 18 difficult to solve directly. In-
stead, following a standard approach for optimal planning in
MDPs [14], we will encode the approximate impact of each
vehicle action on passenger travel times by a cost function,
and determine a policy which minimizes the overall incurred

cost. We start by formulating the cost function.

A. Cost Design

We formulate the cost of an action in a way that captures
the expected increase in passengers’ ideal travel time due to
the action. The ideal travel time of a passenger is defined
as the time spent in the vehicle from the origin bus stop to
the destination bus stop assuming that the vehicle does not
stop at intermediate stops and the passenger does not have
to wait for vehicle at the origin bus stop.

In the cost formulation, the increase in the travel time
resulting from an action is weighted by the number of af-
fected passengers. We thus begin by computing the expected
numbers of passengers boarding and alighting at all stops.

Say that vehicle ¢ is serving stop s. Let pdf , denote the
expected number of alighting passengers. Thenlpdis can be
calculated using equation (2), i.e., pd§ ; = Elpd; s] = (I;,s —
la; s)ps+la; s. Similarly, we compute the approximate value
of expected number of passengers arriving at stop s, pa

7,82

by pag , = E(pa;s) = Ashd; s~ + lo; 5. Since the arriving
headway becomes known only after reaching the stop, we
have taken the expectation of pa,; using equation (1) and
used the departing headway instead of the arriving headway.

The number of passengers boarding vehicle ¢ of total
passenger capacity K’ = 27'K with average passenger
arrival rates is given by pb§ ; = min(Ashd; - +lo; s, K' —
li,s — pds ;). We approximate the time that vehicle i spends
serving stop s by ¢ = tp;  + max(apds , Bpbs ;) + E.
Assuming that the headway of vehicle ¢ remains constant
between stops s; and s;+ and that vehicle ¢~ has stopped
at all the stops from s; to s;+, the expected number of
passengers that intend to board vehicle ¢ at stops s to s;+ is

8i+
Psis =hais Yy As. 6)

s'=st

For computational reasons, we simplistically assume that an
action implemented on vehicle ¢ at stop s only affects the
passengers inside that vehicle and the passengers waiting to
board at stops s; to s;+. We can now move to determining
the cost of each action.

Action stop. If the vehicle stops at a bus stop, the ideal
travel time of the passengers that are not alighting at stop s
increases by ¢ ;. Moreover, the waiting time of passengers at
the stops between s and s;+ increases by ¢7 ;. Additionally,
the travel time is increased for some of the passengers who
arrive at stops s; to s;+ after vehicle ¢ departs from s;.
However, computing the expected increase in their travel
time is difficult, as some of those passengers would have
missed vehicle ¢ if it did not stop as s. For these reasons,
we use the parameter pg; as a tuning parameter to the cost
in the increase of travel time for passengers at stops s; to
s+, and choose pgs; by evaluating the proposed policy for
different values of pg;.

Combining the above considerations, if ¢(s,i,a) gives the
cost of action a applied to vehicle ¢ in state s, then

C(S7 i? Stop) = wwait tis (li,s - pdf,s)

+ Wyait t;s Dst ps,i,si+ . (7)
Action skip. If the bus skips the stop, passengers who
intended to board the bus will have to wait for the next
one, increasing their waiting time. Additionally, passengers
who intended to alight at the stop will have to walk from the
next stop to the current stop, increasing their walking time.
The expected walking time for passengers from stop s™ to
s is given by Wy = Dg/Vpess, Where vp,ss is the average
passenger walking speed. Thus, the cost of skip action is
given by c¢(s, i, skip) = Pb§ sWwaithai- s + pdi Wswwalk-

Actions next and split. The cost of next action is zero, as
it does not increase the passenger travel time. In other words,
c(s,i,next) = 0. If there were no capacity limitations,
the same would be true for the split as it distributes the
passengers based on their desired alighting stop. Due to
the limited capacity of the modules, the split action might
increase the travel time of certain passengers in cases where



the module capacity is insufficient to serve all the passengers
who wish to alight or board at a certain stop. However,
this event is unlikely in practice unless a particular stop
is an extremely busy hub, in which case the split action
can be disallowed at that stop. For simplicity, we assume
(s, 1, split) = 0.

Action join. The join action is only available when a
separated module is about to leave the stop, with the only
other possible action being next. As previously stated, the
cost of the next action is zero. However, the cost of the
join action is positive because the passengers in the leading
module have to wait for the trailing module to complete
passenger boarding/alighting at stop s. As a result, cost
minimization with an immediate decision horizon would
never result in a join action. On the other hand, longer
decision horizons lead to computational issues, as well as
an increasingly poor correlation between the cost model and
actual increases in travel time. Thus, instead of considering
the cost of join directly, we decide whether to pursue join
based on a rule-based policy described below.

B. Proposed Policy

When a bus is about to reach a stop, we choose the action
among stop, if available split, and skip which gives the
lowest immediate cost described above. When a separated
module is about to leave the stop, we consider the additional
dwell time required for the trailing module to be ready to
depart from the stop. If this time is shorter than a tuned
threshold 7, we join the modules.

We now describe the numerical results obtained with the
proposed policy.

V. SIMULATION EXPERIMENTS

In order to validate the policy and compare it to the
state of the art, we use the exact system specifications as
described in [10]. We draw the benchmark policy from [10]
as well, referring to it as split policy, and begin the section
by describing this strategy.

A. Benchmark Policy

In the split policy [10], a bus splits at stop s if its headway
exceeds a particular threshold described in [10]; otherwise,
it stops at the stop. After splitting, the trailing module serves
stop s, and the leading module leaves for the next stop
sT. The leading module waits for the trailing module at
stop sT. After serving stop s, the trailing module alights
the passengers at stop s, where the leading module is
waiting, and then gets attached to the leading module. It was
shown in [10] that such a simple policy already outperforms
an alternative state-of-the-art stop-skipping policy. We now
proceed to describe our simulation setting.

B. Simulation Scenario

We follow the setting of [10]. The parameters ps, Ag, Ds
are drawn from a normal distribution with mean p, A\, D and
the standard deviation equal to 10% of the mean for the
respective parameter. We assume uniform origin-destination

demand, with the passengers traveling 5 stops on average
resulting in p = % Upon performing multiple simulations
with different values of py; — the parameter identified in
(7) used to tune the cost of stop action — the optimal value
is obtained to be 0.5. Input parameters used in the numerical
simulations are all taken directly from [10]. Namely, we
consider a scenario with 20 stops, at an average distance
of 400 meters from each other, and 24 modules, each with
a capacity of 40 passengers. We set the wait time weight
Wyait 10 2.1 and the walk time weight w,q; to 2.2, based
on [13]. We invite the reader to consult [10] for a full
description of the simulation parameters. Preprint [11] posted
roughly in parallel with this paper’s initial version proposes
an alternative policy, but uses different parameters in its
numerical work, so for the purpose of our simulations we
focus on the peer-reviewed results of [10].

The vehicles initially start from stop 1 at time 0, with start
times staggered to dispatch them with the ideal headway,
which is computed using the method given in [10]. To ensure
the system reaches its usual operating conditions before
policy evaluation, we define a evaluation period, which
begins after all the vehicles complete two rounds of the bus
route and lasts for an hour. We present all the results by
assessing the policy performance in the evaluation period.
All modules are initially separated.

C. Numerical Results

To examine the relative performance of the proposed
policy, we simulate three different policies, namely, (i) a no-
control policy — a policy in which each module stops at each
stop, without joining or splitting, (ii) the split policy from
[10], and (iii) the proposed policy, with threshold 7 equal to
31 seconds and stop cost parameter pg; set to 0.5. We plot the
number of in-vehicle passengers and the waiting passengers
as a function of time in Fig. 1 for one illustrative simulation.
The number of in-vehicle passengers for the proposed policy
is smaller than in the other two policies, making it more
capable of handling higher passenger demand. The number
of waiting passengers for the proposed policy is significantly
smaller than the no-control and the benchmark policy. This
feature is reflected in Table I as the average waiting time for
the proposed policy is significantly smaller for the proposed
policy. A small number of walking passengers, shown in
Fig. 1, are observed for the proposed policy as it involves
performing skip actions.

Table I, based on 100 simulations, extensively compares
the proposed policy with the benchmark policy and no-
control case. The values of metrics for the policy used in [10]
are taken directly from [10]. The proposed policy performs
significantly better than the benchmark policy and decreases
the average travel cost by around 13% compared to the
latter. In addition, using the proposed policy, the passengers
experience the least waiting time, and the average load for
the proposed policy is the lowest among all policies, making
it more capable of handling higher passenger demand.

To analyze the policies’ impact on bus bunching, we plot
time-space diagrams of the vehicle trajectories in Fig. 2,
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Fig. 1. Number of in-vehicle, waiting, and walking passengers obtained

with the no-control policy, split policy from [10], and the proposed policy.

TABLE I
PERFORMANCE COMPARISON

. . No Benchmark  Proposed
Metric Units  control  Policy [10]  Policy
Average wait time min 2.6 2.2 1.46
Average walk time min - - 0.82
Average in-vehicle time min 19.5 20.2 16.98
Weighted travel cost Q min 24.96 24.90 21.87
Average cycle length min 36.1 40.2 32.7
Average load per module  pax 18.31 19.95 17.53
Fraction of full vehicles - 10% 0 0

plotting only trajectories of buses under the no-control policy
and when using the proposed policy. The figure shows that, in
the former case, buses are bunched together in large groups.
On the other hand, the proposed policy results in nearly
uniform bus headways with insignificant bus bunching, once
again validating the strength of the proposed policy.
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