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Abstract—In this work, we address the problem of fault
detection, identification, and recovery (FDIR) for simultaneous
actuator and sensor degradation. Prior studies have considered
sensor degradation to some extent, but results for systems that
do not have sensor redundancy while experiencing simultaneous
actuator degradation are lacking. We present a novel method
for robustly detecting and identifying sensor degradation in
the presence of potential bounded actuator degradation modes
under the influence of process and output noise. Subsequently,
we develop novel theory for guaranteed forward reachability in
the case of stochastic differential equations, as well as theory
for robust fault detection for dynamical systems. Our approach
enables in robust state estimation under sensor degradation,
namely in the framework of zonotopic–Gaussian Kalman filters
(ZGKF), providing an end-to-end FDIR framework for simul-
taneous sensor and actuator faults in a multi-agent setting. We
apply our approach, which can be run in real time, to a realistic
model of rigid-body satellite attitude dynamics in the presence
gyroscope bias and gain changes, as well as changes in the
thruster efficacy. We also present a second examples based on
a multi-agent rover mission with limited periodic information
sharing.

Index Terms—fault tolerance, sensor/actuator degradation,
real-time reconfiguration, guaranteed reachability, multi-agent
fault detection

I. INTRODUCTION

Fault detection, identification, and recovery (FDIR) has
been a problem that attracts constant attention from the fault-
tolerant control community [1]. FDIR is often based on nomi-
nal system models and/or redundant sensors to detect changes
in the system dynamics (fault detection), characterize these
changes (fault identification), and recover system performance
despite these changes (fault recovery). We focus in this work
on sensor and actuator faults. In prior work, sensor and
actuator faults are treated in isolation, an idealization that may
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not hold in practice in the case of, e.g., collocated actuator-
sensor clusters. In this paper, we focus our attention exactly
to FDIR for simultaneous actuator and sensor degradation.

Actuator degradation has been studied extensively in the
past, as shown in work by Wang et al. [2], who considered
control input map degradation and actuator saturation in
discrete-time linear systems, where a fault-tolerant control is
developed by solving a constrained optimization problem. A
similar approach was developed by Si et al. [3], where system
reliability was assessed using an event-based Monte Carlo
simulation approach, wherein potential degradation modes are
simulated en masse, further limiting the applicability of this
method due to the intractable number of potential failure
modes that may be encountered in practice, which would
demand a very large number of Monte Carlo simulations.

Sensor degradation, on the other hand, has only received
limited attention in prior work, with results lacking for systems
experiencing simultaneous actuator degradation. Xu et al.
[4] studied a class of fault-tolerant controllers based on
constrained model predictive control (MPC) in the presence
of sensor faults. Their method relies on tightening of MPC
state constraints due to faulty sensor measurements; actuator
changes are not accounted for in this work. Efimov et al. [5]
studied the problem of fault detection and compensation by
treating actuator faults as unknown inputs, but their approach
does not account for sensor degradation. Their method is ap-
plicable to discrete-time nonlinear systems, but relies heavily
on higher-order numerical differentiation; importantly, actuator
disturbance structure is not leveraged in this case, which makes
the approach ill-suited for use in predictive fault mitigation.

We present a novel method for robustly detecting and iden-
tifying sensor degradation in the presence of potential bounded
actuator degradation modes, under the influence of process and
output noise. Our approach is structured as follows:

1) Assuming bounded propagation error rates due to actuator
degradation, as well as interval-bounds on output mea-



surements, we use interval-based ordinary least squares
regression to fit a potentially biased affine sensor degra-
dation map from the expected output to the sensed output.

2) We account for inherent stochastic process and sensor
noise by introducing bounds on the sensor degradation
map parameter estimates to obtain confidence intervals
that contain the original sensor readings at a speci-
fied level of confidence, which we term the confidently
reached output set.

3) The estimated sensor degradation map is used to robustly
test for the presence of sensor degradation, which we
do by studying a parsimonious model of the sensor as
opposed to raw high-dimensional output time series.

4) We leverage guaranteed reachable output sets to account
for allowable model uncertainty, enabling us to detect
the presence of actuator degradation by monitoring the
excursion of the guaranteed reachable output set from
the confidently reached output set.

5) We reconstruct the full state of the potentially impaired
system by leveraging the theory of zonotopic-Gaussian
Kalman filters (ZGKF). Here, the zonotopic disturbance
is reconstructed directly from the observed sensor data,
allowing us to obtain output-based set-valued estimates of
the system state, which can in turn be used in planning.

The proposed framework is largely model-agnostic, and
only requires a means of simulating the nominal system’s
trajectory as well as rudimentary propagation error rate
bounds. Despite these lax requirements, we are capable of
reconstructing a range of sensor degradation modes, as well
as narrowing down the set of potential actuator degradation
modes over time. In addition, our approach allows for robust
state estimation, providing an end-to-end FDIR framework
for simultaneous sensor and actuator faults, with extensions
to multi-agent systems with periodic information sharing. In
this multi-agent extension, we consider periodic availability of
potentially corrupted external output information, which we
use to facilitate faster FDIR on the ego system.

We apply our approach, which can be run in real time,
to a realistic example based on rigid-body satellite attitude
dynamics in the presence gyroscope bias and gain changes,
as well as changes in the thruster efficacy. Additionally, we
present an example on a multi-agent ground rover system with
limited information exchange.

II. PRELIMINARIES

A. Notation

Let Sτ (X,Y ) denote the set of simple functions whose
defining disjoint sets have measure greater than τ > 0, i.e.,
all f ∈ Sτ (X,Y ) are such that f(x) :=

∑
k αkχAk

(x),
such that µ(Ak) ≥ τ for all k. Here, χA is the indicator
function, where χA(x) = 1 if x ∈ A, and 0 otherwise; µ
is the Lebesgue measure. By S∞(X,Y ) we refer to the set
of constant functions. By calligraphic lower-case letters we
denote intervals or hyperrectangles, e.g., x ∈ K(Rm), where
x and x denote the lower and upper corner, respectively;

K(Rm) denotes the set of compact hyperrectangles in Rm.
We denote a closed ball in Rm centered around the origin
with radius r > 0 as Bm

r .

B. Problem Formulation

Consider the following nominal affine-in-control switched
stochastic differential equation (SDE):

˙̄x(t, σ(t)) = f(x̄(t)) + g(x̄(t))Pσ(t)u(t),

ȳ(t, σ(t)) = h(x̄(t, σ(t))),
(1)

where W (t) is a Wiener process, and ν(t) ∼ N(0, σ2
ν). We

denote the system’s state x(t) ∈ Rn, control input u(t) ∈ Rm

and output y(t) ∈ Rd. Let y∗(t) := h(x(t)). Let x̄(t) :=
x̄(t, 1). Define the following off-nominal system:

dx(t) = f(x(t))dt+ g(x(t))Pσ(t)u(t)dt+ dW (t),

y(t) = qσ(t) +Qσ(t)(h(x(t)) + ν(t)).
(2)

Here, Pσ(t) ∈ C0(Rm,Rm) is called the control degradation
mode or map (CDM), and qσ(t) ∈ Rd and Qσ(t) ∈ Rd×d

define an affine sensor degradation mode or map (SDM).
We make the following assumptions about the switching

signal:

Assumption 1. For switching signal σ : R+ → Σ, assume
that #Σ ∈ N, and let σ = 1 represent the nominal operational
mode, where P1 = I and (p1, Q1) = (0, I).

Furthermore, assume that admissible switching signals σ
originate from the set Sτ (R+,Σ) for some known dwell time
τ > 0.

We define the guaranteed (forward) reachable set (GRS) as
follows:

Definition II.1 (Guaranteed Reachable Set). Assuming that
sensor degradation mode Pσ(t) satisfies Pσ(t) ∈ P ⊆ BδP (I)
for all values of σ(t) ∈ Σ, the guaranteed reachable set (GRS)
is defined as some set X→(t,X0, u) satisfying:

X→(t,X0, u)

⊇ {φ(t;x0, u, P ) : x0 ∈ X0, P ∈ Sτ ([0, t],P)} ,
(3)

where φ(t;x0, u, P ) denotes the trajectory of system (1) with
initial state x0, control input signal u, and CDM P .

The guaranteed reachable output set (GRO) is defined as
some set Y →(t,X0, u) such that

Y →(t,X0, u)

⊇ {h(φ(t;x0, u, P (t))) : x0 ∈ X0, P ∈ Sτ ([0, t],P)} .
(4)

This set is simply a superset of h(X→(t,X0, u)).
Any set that satisfies the above condition (4) and is de-

scribed by a nominal output trajectory ȳ(t) as ȳ(t) + Bρ(t),
where ρ : [0, T ] → R+ defines a funnel, is called a confidently
reached output set (CRO).



Fig. 1: Comparison between various classes of common degra-
dation modes. Our approach focuses on (2) where sensor
degrades with changes in gain and offset. This allows our
method to recover the sensor readings and separate out actuator
failures even in the presence of sensor degradation.

C. Sensor Degradation Modes

We briefly consider a practical classification of common
degradation modes, illustrated in Fig. 1. The following cate-
gories for sensor faults have been identified in the literature
[6]:

1) Bias: Constant drift (y(t) = y∗(t) + δ).
2) Drift: Time-varying (y(t) = y∗(t) + δ(t)).
3) Noise: 0-mean random (y(t) = ν(t)).
4) Scaling/Gain: Scaled magnitude (y(t) = α(t)y∗(t)).
5) Hard faults: Lost/stuck sensor (y(t) = Cσ(t) + ν(t)).
6) Intermittents: Intermittent loss of sensor signal (y(t) =

Jσ(t) = 1Ky∗(t) + Cσ(t) + ν(t)).
Faults 1–3 are often referred to as ‘tame’ faults, whereas

faults 4–6 are called severe faults [6]. Before we proceed to
described methods for robust detection of sensor degradation,
it bears mentioning what difficulties underly this problem.

In general, it is hard to ascribe anomalous sensor readings
either to changes in the dynamics or to sensor failure, since
these may overlap. Consider as an example an aircraft report-
ing a constant roll rate; such a report may be due to a stuck
gyroscope reading, or could be due to an unresponsive aileron.
Discriminating between these two failure modes requires ac-
tive probing, i.e., altering the control signal, in cases where
one does not have sensor redundancy, as is the case here.

Since we would like to develop a passive detection algo-
rithm, we consider cases in which sensors experience gain
changes or constant biases that could be accounted for, as
opposed to completely ignoring these readings. In particular,
we focus on affine degradation maps (Fig. 1.2). We refer to
these sensor failure modes as reversible or recoverable failure
modes, since the affine transformation y = ax + b can be
inverted if a ̸= 0, giving x = (y − b)/a. A key motivation
here is that disregarding recoverable sensor readings may often
result in much greater problems in systems that lack sensor
redundancy, with the possibility of loss of mission.

We now proceed by posing the problem of robust detection
of sensor degradation.

III. ROBUST DETECTION OF SENSOR DEGRADATION

We proceed by posing two problems regarding sensor degra-
dation mode detection. We distinguish between the absence
and presence of control authority degradation modes. It bears
noting here that we assume that sensor degradation always pre-
cedes actuator degradation; we comment on the implications
of the opposite case later in this work.

Problem 1 (Robust SDM Detection). Given system (2),
assuming that σ ∈ S∞(R+,Σ \ {1}), determine in time T
with confidence γ ∈ (0, 1) whether (q,Q) ̸= (0, I) given
input–output pair (y(t), u(t))Tt=0 and knowledge of the GRS
of (1) under the influence of CDMs in P.

In this first problem, we aim to determine whether or the
acting sensor degradation mode is not equal to the identity
transform (0, I) with confidence γ. This amounts to robust
detection of a sensor degradation mode. We extend this
problem by also demanding that the presence of simultaneous
actuator degradation be detected:

Problem 2 (Robust CDM–SDM Detection). Given system (2),
assuming that σ ∈ S∞(R+,Σ \ {1}), determine in time T
with confidence γ ∈ (0, 1) whether (q,Q) ̸= (0, I) and P ̸=
I given input–output pair (y(t), u(t))Tt=0 and knowledge of
nominal trajectories and the GRS of (1) under the influence
of CDMs in P.

We also state the robust SDM identification problem:

Problem 3 (Robust SDM Identification). Given System 2,
assuming that σ ∈ S∞(R+,Σ \ {1}), construct in time T
a compact set K in which (q,Q) resides with confidence
γ ∈ (0, 1), given input–output pair (y(t), u(t))Tt=0 and knowl-
edge of the GRS of (1) under the influence of CDMs in P.

In this problem, our goal is not only to detect the SDM
as in Problem 1, but also identify it. We briefly consider
some alternative approaches to solving Problem 3, noting
shortcomings of these approaches prior to presenting our own
method:

Problem 3 can be formulated as an unknown input observer
(UIO) synthesis problem for control-affine stochastic differen-
tial equations. Consider the following system:

dx(t) = f(x(t))dt+ g(x(t))v:m(t)dt+ dW (t),

y(t) = vm:(t),
(5)

where v:m(t) = Pσ(t)u(t) and vm:(t) = qσ(t) +
Qσ(t)(h(x(t))+ν(t)). This problem has been addressed in the
linear parameter variance discrete-time case in [7]. One major
drawback here is the fact that much of the problem structure is
discarded, making it prohibitive to tractably reconstruct v(t).



Another possibility is to frame the problem as a state
estimation problem with partially unknown initial state [8]:

dx:n(t) = f(x:n(t))dt+ g′(x(t))u(t)dt+ dW (t),

ẋn:(t) = 0

y(t) = h′(x(t) + ν(t)) = q +Q(x:n(t) + ν(t)),

xn:(0) = param(P, q,Q),

g′(x(t)) = g(x:n(t))P,

(6)

where only x:n(0) is known and param(P, q,Q) describes
P , q, and Q as a vector of parameters. Note that here P is
assumed to be a linear map. Both problems have not been
addressed in full generality, necessitating a novel approach
such as ours even to address the fault detection problem, let
alone the identification problem.

Before presenting our approach, we proceed by making
some simplifying assumptions:

Assumption 2. Noise ν is normally distributed with zero
mean and variance σ2. Additionally, there exists known r > 0
such that ∥y(t)∥ ≤ r and ∥bias(y(t))∥ = ∥E[y∗(t)|y(t)] −
y(t)Tβ∥ ≤ a almost surely for all finite-time trajectories
generated by system (2). Here, β is the vector of regressors.

The assumption of normally distributed output noise is a
common one in the literature. On the other hand, the almost-
sure boundedness of the output signal is a given in practical
systems with finite sensor output [9].

We now proceed by introducing a method for SDM iden-
tification, which allows us to directly detect the presence of
SDMs at the same time.

A. Robust Identification of SDMs
Our approach to solving Problem 1 is based on the idea

of separating deterministic and stochastic uncertainty. We
leverage the funnel radius ρ(t) to account for small model
imperfections so as to obtain a confidently reached output
(CRO) set; doing so accounts for deterministic uncertainties.
On the other hand, the effects of the process noise W (t) and
output noise ν(t) are harder to account for. We propose to fit
our affine sensor degradation model to the noisy output data
and the CRO, and account for the effect of stochastic noise
errors on the parameter estimations by producing a guaranteed
set of parameters for some given confidence 0 < γ < 1.

Since we wish to find a relationship between the CRO,
which is a set, and the measured (possibly corrupted) sensor
output, we proposed to adopt a method known as interval-
based least squares [10]. We consider the following model:

y(t) = Qy∗(t) +q, (7)

where y,y∗,q ∈ K(Rm) are intervals and Q ∈ diag(Rm) is
a diagonal matrix. Our goal is to find Q and q such that the
Euclidean norm error between the left- and right-hand sides
of the equation is minimized. After some manipulation, this
problem reduces to an ordinary least squares problem of the
following form:

min
β

∥(be + b̃e)− (Ae + Ãe)β∥, (8)

where be, β ∈ R3m. Here, Ae + Ãe is known as a random
design matrix, where Ae is the known mean and Ãe is a zero-
mean Gaussian matrix with known variance per Assumption 2.
Similarly, the vector of outputs be+ b̃e is normally distributed
with known variance bounds and known mean.

It is possible to obtain a set in which the coefficient vector
β, which describes Q and q, is guaranteed to reside with
confidence 0 < γ < 1. Such a result was provided by Hsu
et al. [9], who studied the effect of random design matrix
ordinary least squares on the model coefficients β:

Proposition 1 ([9, Thm. 1, p. 8]). Let Assumption 2 hold.
Then, for any fixed δ ∈ (0, 1), if N is strictly greater than

N2,δ := 4ρ22,covd log(d/δ), (9)

the following bound holds with probability at least 1− 2δ:

∥β̂OLS − β∥2Σ

≤ K2,δ,N
σ2
noise(d+ 2

√
d log(1/δ) + 2 log(1/δ))

N
,

(10)

where

K2,δ,N :=

1−

√
2ρ22,covd log(d/δ)

N

−1

. (11)

The bound in (10), which is known as the excess loss, can
directly be used to find intervals for the SDM coefficients at
a desired confidence level, namely (q,Q). Using this result,
we may now solve a hypothesis testing problem which will
yield whether or not sensor degradation is present at a desired
confidence level γ.

B. Robust Hypothesis Testing for SDM Detection

We now proceed by posing a solution to Problem 1 based on
hypothesis testing on the parameters that describe the SDM,
(q,Q). Using the approach described in Proposition 1, we
obtain two intervals (q,Q). These intervals can be subject to
the following two tests to determine whether or not an SDM
is present with confidence γ.

a) Presence of SDM with confidence γ: If (0, I) /∈
(q,Q), we know with confidence γ that an SDM is indeed
active.

b) Absence of SDM with confidence γ: On the other
hand, detecting if a sensor is operating nominally requires
us to consider confidence 1− γ and obtain the same interval
(q,Q). If (0, I) lies inside this interval, then there is no active
off-nominal SDM with confidence γ.

This approach solves the sensor degradation mode detection
problem at a desired confidence γ. As a matter of fact, we
immediately obtain a family of sensor degradation modes
which is guaranteed to contain the true SDM with confidence
γ. We may now develop an approach to detecting actuator
degradation.



Fig. 2: Illustration of the octahedral gyroscope setup [11]. This
configuration nominally allows for error detection using parity
relations, where three or four sensors can be used to detect
failure of another sensor.

C. Robust Detection of Sensor & Actuator Degradation

In detecting sensor degradation modes, our method directly
produces a set of identified SDMs that is guaranteed to contain
the true SDM at a specified confidence level.

Having shown how to detect and identify sensor degradation
modes, we may know consider detecting actuator degrada-
tion. Our proposed approach uses the confidently reachable
output set (CRO), which we assumed to be available as
h(x∗(t)+Bρ(t)). Given the identified set of SDMs, we directly
reconstruct a set of candidate outputs from the corrupted
sensor output by inverting the set of affine maps. If the CRO
transgresses the reconstructed output set, we can say with
confidence γ that there is in fact actuator degradation. We
illustrate this method by way of example in the following
section.

IV. SINGLE-AGENT APPLICATION

Consider the following rigid-body satellite attitude dynam-
ics [12]:

d

dt


ω
q
q4
h

 =


J−1 (ω×Jω − ω×h+ u+ d)

1
2ω

×q+ 1
2q4ω

− 1
2ω

Tq
−u

 , (12)

where ω denotes the body angular rate vector, q denotes the
vector part of the quaternion, q4 is the scalar part of the
quaternion, and h represents the angular momentum of the
spacecraft. J denotes the intertia tensor, which is assumed to
be invertible, u denotes the body axis-aligned torque input,
and d denotes a disturbance signal. Finally, ω× is a skew
symmetric matrix:

ω× :=

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 .

We consider in this work the following inertia tensor from
[13]:

J =

20 0 0.9
0 17 0
0.9 9 15

 .

A. Output Model

We consider the following octahedral two-degree-of-
freedom IMU configuration [11], as illustrated in Fig. 2:

y∗(t) := h(x(t)) = Hω, (13)

where

H :=


a 0 a
−a 0 a
a a 0
a −a 0
0 a a
0 a −a

 , (14)

with a = cos(π/4) =
√
2/2. This configuration is very

common in application because it enables so-called parity
relations to be established; given four sensor readings, it is
possible to rule out failure of a single axis through a linear
combination of output signals that should equal 0 in the
nominal case [11].

B. Gyroscope Failure Modes

We consider the following sensor degradation modes, which
were chosen arbitrarily to cover a number of different failures:

y1 = 1.7y∗,1 − 0.05,

y2 = y∗,2,

y3 = 10−3y∗,3 + 0.2,

y4 = y∗,4,

y5 = 0.4y∗,5 + 0.1,

y6 = 10−3y∗,6 + 0.6,

(15)

Here, the second and fourth sensor do not experience any
sensor degradation (other than inherent noise). Sensors #3 and
#6, on the other hand, experience an almost complete loss of
signal, being replaced by 0.2 and 0.6 instead. Finally, sensors
one and five experience affine maps that include a reasonable
gain change and bias.

We also introduce a fault in one of the thruster pairs; at
60 seconds, the first thruster pair produces zero thrust for
a duration of 60 seconds, after which control authority is
regained. We apply our approach with a 95% confidence
bound.

C. Results

We demonstrate the efficacy of our approach by considering
the results on the first sensor, as shown in Fig. 3. Fig. 3a
shows the true (unknown) sensor output, as well as the GRO
(ideal output), and the sensed (corrupted) output. Applying
our approach, we can reconstruct the original sensor output
based on the corrupted sensed output, as shown in Fig. 3b.
Our method directly produces confidence bounds, as shown by



(a) Corrupted sensor readings. The solid line represents the
true output, whereas the dashed line shows the ideal output
based on the guaranteed reachable output set; this reading
starts to deviate at 60 seconds due to actuator failure. Only
the noise corrupted output is available for processing.

(b) Reconstructed sensor readings. Using the sensed noisy output reading and
the ideal output, our approach can reconstruct the true output (orange solid line)
along with guaranteed confidence bounds (orange dashed line). This enables
us to autonomously detect actuator faults in a timely fashion, as shown by the
vertical red dashed line.

Fig. 3: True, ideal, sensed, and reconstructed output readings for sensor 1 based on the single spacecraft attitude dynamics.

the dashed lines, in this case at a 95% confidence level; these
confidence bounds are tight enough to allow for reasonable
fast failure detection, without demanding sensor redundancy.
Note that we have smoothened the upper and lower bounds
using a Savitzky–Golay filter for ease of exposition.

We detect the thruster malfunction 27 seconds after failure
using the data obtained by this sensor. Sensor 2 data gives us
the same result after 32 seconds and sensor 4 takes 37 seconds.
This data may be seen in Figs. 8 and 9.

The approach presented here allows for all of the above to be
achieved with marginal knowledge, requiring only the nominal
trajectory to be known. In addition to being able to reconstruct
the original sensor output from its corrupted counterpart, we
also allow for robust detection of actuator faults, without a
need to know for a list of potentially failure modes. Unlike
past methods, we do not require a hand-crafted filter bank to
detect sensor failure, allowing for the present method to be
adopted easily for a wide variety of systems without requiring
additional design effort.

We now continue by discussing a multi-agent extension to
fault detection based on limited periodic information sharing.

V. MULTI-AGENT FAULT DETECTION

In the case of networked multi-agent systems capable of
(limited) information sharing, it is possible to periodically
introduce additional sensed outputs to a set-based state es-
timation process, thereby tightening the full-state set estimate.

The approach is straightforward: we compute an F -radius
minimizing Luenberger gain matrix La based on the new aug-
mented input matrix Ca, allowing us to robustly incorporate
both the internal sensed outputs and the new external ones.
For the external outputs, we can easily introduce additional
noise bounds in the F matrix based on the trustworthiness of
the external data.

Consider now the case in which we are only allowed to
request external data for at most Nr ∈ N times. We are
interested in minimizing the time-to-detection (TTD) of any
fault since its initial occurrence, without imposing control
input constraints:

Problem 4 (Cooperative Passive SDM Time-to-Detection
Minimization). Given System 2, assume that σ ∈ S∞(R+,Σ\
{1}) for all t ∈ R+, and assume Nr ∈ N τ -length external
data requests (τ -EDRs) are allowed. Minimize the time-to-
detection T within which, with confidence γ ∈ (0, 1), we can
detect (q,Q) ̸= (0, I) given input–output pair (y(t), u(t))Tt=0

and knowledge of the GRS of (1) under the influence of CDMs
in P.

We shall refer to this problem as the TTD-minimizing EDR
allocation problem. We now introduce some theory on set-
propagation-based observers.

a) Set-propagation Observer in a Multi-agent Setting:
Consider following the discrete-time linear time-invariant sys-
tem:

x[k + 1] = Ax[k] +Bu[k] + w[k],

y[k] = Cx[k] + v[k],
(16)

where w[k] ∈ W and v[k] ∈ V ⊆ ×m
i=1[−σi, σi]. We shall

use in this work an F-radius (Frobenius norm) minimizing
Luenberger observer [14, §3.2]:

X[k + 1] = (A− LC)X[k] +Bu[k] + Ly[k] + (−L)V +W,
(17)

where

L = AGGTCT[CGGTCT + FFT]−1, (18)

for a zonotope X[k] = c+GBr
1 , W = EBnw

1 and V = FBnv
1 .



This choice of Luenberger gain minimizes the F-radius of
G [14, §3.2], which is defined as:

∥G∥F =
√
trace(GTG). (19)

If V is a symmetric hyperrectangle defined by a vector δv ∈
Rd

+, then we have F = diag(δv); the same holds for W such
that E = diag(δw).

We shall consider the introduction of external outputs in
the observer, with the goal of choosing a external source
that minimizes state uncertainty in a desired direction. This
desired direction will be the one in which there is most state
uncertainty, which will enable us to most accurately determine
a set of candidate SDM models as in Proposition 1. This solves
Problem 4. We pose the following problem on data source
selection:

Problem 5 (Data Source Selection). For system (16), where
output map C can be chosen from a finite set C ∈ K(Rn×m),
choose C ∈ C such that X[k + 1] has minimal width along
the direction λ ∈ ∂Bn

1 .

Since we can only influence the (A − LC)G[k] and −LF
terms of G[k+1], we shall exclusively consider the effects of
the output map C ∈ C:

(A− LC)G = AG−AGGTCT[CGGTCT + FFT]−1CG.

Here, we would like to minimize the following quantity:

min
C∈C

∥λTAG(I −GTCT[CGGTCT + FFT]−1CG)+

λTAGGTCT[CGGTCT + FFT]−1F∥.
(20)

Since C is finite, we can directly solve for a desired external
information source. In this case, the matrix F is extended
based on the output uncertainty of the external data source.
This relates directly to the SDMs (Q,q)i identified for each
external agent, based on the reconstructed output funnels
described in Sec. III-B.

The remainder of the approach remains the same; with
the introduction of periodic external data, we obtain tighter
reconstruct output sets, which will allow for faster detection
of sensor and actuator degradation, as shown in Sec. VI.

We proceed with an example dealing with a multi-agent
system based on a ground rover.

VI. MULTI-AGENT APPLICATION

For our multi-agent application, we consider the case were
an agent runs the proposed single-agent SDM–CDM detection
algorithm, but has the capability of requesting information
about its own state from stationary beacons periodically.

We consider the following dynamics of a rover:

Fig. 4: Illustration of the rover geometry considered in this
work.

ẋ(t) =

 0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 (−Cf−Cr)/(mu) (−Cf la+Crlb)/(mu)−u

0 0 0 (−Cf la+Crlb)/(Iu) (−Cf l
2
a−Crl

2
b)/(Iu)

x(t)

+


1 0
0 0
0 0
0 Cf/m
0 Cf la/I


[
v(t)
r(t)

]

y(t) =

[
1 0 0 0 0
0 1 0 0 0

]
x(t).

(21)

Here, Cr = 0.2 and Cf = 0.1 are tire turning friction
coefficients, la = 1 and lb = 1 are the front and rear tire
axel lengths, m = 10 is the mass of the vehicle, I = 1 the
rotational inertia, and u = 0.5 the longitudinal velocity. Fig. 4
shows an overview of the rover geometry.

We consider five randomly placed beacons, which are of
types ‘A’, ‘B’, and ‘C’, as shown in Fig. 5. Beacon ‘A’ provides
high quality data for state 1 and mediocre data for states 2 and
3, beacons ‘B’ does so for state 2, and beacon ‘C’ for state 3.
For each 120 time samples, a 20 sample window is provided
during which the agent can communicate with any one of the
beacons. The uncertainty associated with each of the beacon
readings is attenuated with distance d as e0.02d, to account for
ranging errors with distance.

We simulated the system described above, prioritizing tight-
ness of state 1 zonotope bounds. As shown in Fig. 6, external
data greatly tightens the uncertainty bounds, allowing for
timely detection of anomalies. To described the data selection
results, during the first 20 samples, data source 4, a C-
type beacon in the middle of the traveled path, is selected.
Immediately thereafter, source 3, a B-type beacon at the end
of the course, is selected for the remainder of the run.

The effects of data sharing on the other zonotope bounds are
shown in Fig. 7. One can notice that there is a certain ‘grace
period’ after data sharing during which the zonotope bounds
slowly grow back. This phenomenon will be the subject of
future work, as it could be leveraged to request data at different
rates depending on this deterioration rate.



Fig. 5: External ranging beacon types and locations considered in the multi-agent rover example. In addition to experiencing
attention due to the distance to a beacon, we also consider different noise levels for each supported state based on the beacon
type. Beacon ‘A’ report high-fidelity readings for the first state, beacon ‘B’ for the second state, and ‘C’ for the third state.
Using our approach, an agent is capable of autonomously choosing the desired information source depending on the uncertainty
parameters.

(a) State 1 estimate without external data. State uncertainty bounds
remain large throughout the entire system run, making this data ill-
suited for fault detection.

(b) State 1 estimate with external data. During periods of information
exchange, the state uncertainty decreases, allowing for detection of
potential faults.

Fig. 6: Comparison between state 1 estimate based on internal sensors and external information.

(a) Zonotope bounds without external data. Note the exponential
growth in the zonotopic state uncertainty bounds. Without an external
ground truth or periodic information exchange, these bounds quickly
grow to an extent where fault detection is no longer tenable.

(b) Zonotope bounds with external data. Note the gradual increase
of the error bounds after a period of information exchange. Such a
‘grace period’ is instrumental in allowing for fault detection even
when no external data is available.

Fig. 7: Comparison between state zonotope bounds based on internal sensors and external information.

VII. CONCLUSION

In this work, we have presented a novel method for fault
detection and identification (FDI) in the case of simultaneous
sensor and actuator failure. Our method is model-agnostic, and
can be applied in real time. We have applied our approach to
satellite attitude dynamics in the case of reaction wheel and
gyro degradation, showing that we can adequately reconstruct
corrupted sensor signals, as well as detect actuator failure in a
timely fashion despite a lack of sensor redundancy. We have
also presented a new approach for guaranteed state estimation
in case of multiple information sources, which we applied
to a moving rover example, resulting in optimal selection of
information sources in data-constrained environments.

For future work, we aim to address the case of actuator-
to-sensor degradation. This problem is prohibitive to solve
at a fundamental level, since it is not certain when or if
sensor data gets corrupted in the case of uncertain actuator
degradation. Given the assumption of an oracle that tells us if
we are dealing with sensor-to-actuator or actuator-to-sensor
degradation, it may be possible to tighten detection error
bounds. The existence of such an oracle could be justified by
considering low-cost diagnostics sensors that provide limited
information about sensor or actuator health. In the case of
multi-agent systems, a method of finding an opportunity cost
for requesting external information is an open problem; such
an opportunity cost will allow an agent to optimally schedule



when to request information from external sources.
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(a) Sensor 1 (b) Sensor 2

(c) Sensor 3 (d) Sensor 4

(e) Sensor 5 (f) Sensor 6

Fig. 8: True, ideal, and sensed output readings for the single spacecraft attitude dynamics.



(a) Sensor 1 (b) Sensor 2

(c) Sensor 3 (d) Sensor 4

(e) Sensor 5 (f) Sensor 6

Fig. 9: True, ideal, and reconstructed output readings with 95% uncertainty bounds for the single spacecraft attitude dynamics.


