
Viability under Degraded Control Authority
Hamza El-Kebir1, Richard Berlin2, Joseph Bentsman3, and Melkior Ornik4

Abstract—In this work, we solve the problem of quantifying
and mitigating control authority degradation in real time. Here,
our target systems are controlled nonlinear affine-in-control
evolution equations with finite control input and finite- or infinite-
dimensional state. We consider two cases of control input degra-
dation: finitely many affine maps acting on unknown disjoint
subsets of the inputs and general Lipschitz continuous maps.
These degradation modes are encountered in practice due to
actuator wear and tear, hard locks on actuator ranges due to over-
excitation, as well as more general changes in the control alloca-
tion dynamics. We derive sufficient conditions for identifiability
of control authority degradation, and propose a novel real-time
algorithm for identifying or approximating control degradation
modes. We demonstrate our method on a nonlinear distributed
parameter system, namely a one-dimensional heat equation
with a velocity-controlled moveable heat source, motivated by
autonomous energy-based surgery.

Index Terms—Fault accommodation, fault detection, system
identification.

I. INTRODUCTION

In control systems, fault detection and mitigation is key in
ensuring prolonged safe operation in safety-critical environ-
ments [1]. Any physical system undergoes gradual degradation
during its operational life cycle, for instance due to interactions
with the environment or from within as a result of actuator
wear and tear. Gradual degradation or impairment, as the name
suggests, often reduces the performance of a system in cases
when potential degradation modes were not taken into account
during control synthesis. Fault tolerance is a key property of
systems that are capable of mitigating or withstanding system
faults, including gradual degradation.

A number of stochastic approaches to fault identification
and mitigation have been developed in the past, with the main
objective of estimating the remaining useful life (RUL) of a
system, and how this metric is influenced by the controller. Mo
and Xie [2] developed an approach to approximate the loss in
effectiveness cause by actuator component degradation using
a reliability value. Their method relies on frequency domain
analysis using the Laplace transform, which is limited to linear
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systems; in turn, proposed reliability improvements hinge on
the use of a PID controller strategy and rely on a particle
swarm optimization routine, which is highly restrictive with
regard to runtime constraints and convergence guarantees. A
similar approach was developed by Si et al. [3], where reliabil-
ity was assessed using an event-based Monte Carlo simulation
approach, wherein potential degradation modes are simulated
en masse, further limiting the applicability of this method. This
is due to the intractable number of potential failure modes that
may be encountered in practice, which would demand a very
large number of Monte Carlo simulations.

In the deterministic setting, Wang et al. [4] considered con-
trol input map degradation and actuator saturation in discrete-
time linear systems, where a fault-tolerant control is developed
by solving a constrained optimization problem. Given the
discrete-time linear system setting, [4] uses efficient linear
matrix inequality (LMI) techniques for controller synthesis.
However, the class of actuator degradations considered in [4]
is limited to linear diagonal control authority degradation with
input saturation. In the context of switching systems, Niu et
al. [5] considered the problem of active mode discrimination
(AMD) with temporal logic-constrained switching, where a
set of known switching modes was known a priori. Other
work relies on application-specific projection-based adaptation
routines where a set of switching adaptive controllers is used
[6]; however, such an approach does not incorporate non-
smooth failure modes that conditionally act depending on the
control input provides, nor are regions of degradation robustly
identified as is done in the present work. A major contribution
is the fact that we do not demand complete knowledge of the
underlying system structure, which is essential in Lyapunov
analysis for adaptive methods.

In the present work, we consider a class of faults, which
we refer to as actuator degradation. The latter may arise as a
result of wear and tear, software errors, or even adversarial
intervention. Considering the following nonlinear control-
affine dynamics 𝑥̇(𝑡) = 𝑓 (𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢(𝑡), we define input
degradation modes of the form ̇̄𝑥(𝑡) = 𝑓 (𝑥̄(𝑡))+𝑅𝑔(𝑥̄(𝑡))𝑃𝑢(𝑡),
where 𝑃 and 𝑅 are two unknown time-varying maps. We refer
to 𝑃 as a control authority degradation map (CDM), whereas
𝑅 is referred to as a control effectiveness degradation map
(CEM). Our focus in this work is on CDMs; a number of
common CDMs are illustrated in Fig. 1. A CDM 𝑃 effectively
acts as a control input remapping, and can be thought of in the
context of control systems with delegated control allocation,
e.g., when an actuator with internal dynamics takes 𝑢(𝑡) and
remaps it based on its internal state. Such a setting includes
common degradation modes such as deadzone or saturation,
or any other nonlinear transformation due to effects such as
friction. In more extreme cases, it is possible that 𝑃 maps a
control signal 𝑢𝑖(𝑡) to another control signal 𝑢𝑗(𝑡) due to incor-
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Fig. 1: Comparison between various classes of control author-
ity degradation maps.

rect wiring or software design. The types of control authority
degradation maps that we allow for in this work go beyond
linear maps applied to discrete-time finite-dimensional linear
systems, which hitherto been the main focus in prior work.
We develop an efficient passive algorithm for detection and
identification of CDMs, with the quality of the reconstructed
CDM monotonically increasing with system run time. We
have chosen to focus on the viability property in this work as
opposed to discussing viabilizability, i.e., synthesizing fault-
tolerant controllers. Hence, the focus of this work is on guar-
anteed identification of control authority degradation modes,
where sufficient conditions on identifiability and convergence
results are developed.

We note that we do not consider external disturbances or
other unmodeled dynamics in this work; robustness results re-
garding the effects of disturbances will be the subject of future
work. A more general analysis capturing faults beyond CDMs
will also be deferred to a forthcoming publication; instead, we
have elected to give in-depth convergence results. The results
of this work allow for guaranteed approximation of arbitrary
control degradation maps without the need for knowledge of
possible degradation modes or handcrafted filters, addressing
an open problem in the literature The natural next step of this
work, outside of the scope of this letter, is to approximate
unviable control signal with their closest viable counterpart,
with robustness bounds on the maximum trajectory deviation.

II. PRELIMINARIES

A. Notation
We use ‖ ⋅ ‖ to denote the Euclidean norm. Given two

sets 𝐴,𝐵 ⊆ ℝ𝑛, we denote by 𝐴 + 𝐵 their Minkowski sum
{𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}; the Minkowski difference is defined
similarly. By 2𝐴 we refer to the power set of 𝐴, i.e., the family
of all subsets of 𝐴. We denote a closed ball centered around
the origin with radius 𝑟 > 0 as 𝑟. By (𝑥, 𝑟) we denote
{𝑥} + 𝑟. We denote by (𝐴,𝐵) the set of bounded linear
operators, and by (𝐴,𝐵) the set of closed linear operators
between 𝐴 and 𝐵. We define ℝ+ ∶= [0,∞). For two points
in a Banach space ℬ ∋ 𝑎, 𝑏, let [𝑎, 𝑏] denote the convex
hull of 𝑎 and 𝑏, i.e., [𝑎, 𝑏] ∶= conv{𝑎, 𝑏}. Given a point

𝑥 ∈ 𝑆 and a set 𝐴 ⊆ 𝑆, we denote 𝑑(𝑥,𝐴) ∶= inf𝑦∈𝐴 𝑑(𝑥, 𝑦).
We define the distance between two sets 𝐴,𝐵 ⊆ ℝ𝑛 to be
𝑑(𝐴,𝐵) ∶= sup𝑎∈𝐴 inf𝑏∈𝐵 ‖𝑎 − 𝑏‖. We denote the Haus-
dorff distance as 𝑑H(𝐴,𝐵) ∶= max{𝑑(𝐴,𝐵), 𝑑(𝐵,𝐴)}. An
alternative characterization of the Hausdorff distance reads
𝑑H(𝐴,𝐵) = inf{𝜌 ≥ 0 ∶ 𝐴 ⊆ 𝐵+𝜌, 𝐵 ⊆ 𝐴+𝜌}, where 𝑋+𝜌
denotes the 𝜌-fattening of 𝑋, i.e., 𝑋+𝜌 ∶=

⋃

𝑥∈𝑋{𝑦 ∈ ℝ𝑛 ∶
‖𝑥 − 𝑦‖ ≤ 𝜌}.

We denote by 𝜕𝐴 the boundary of 𝐴 in the topology induced
by the Euclidean norm. For a function 𝑔 ∶ 𝐴 → 𝐵, we denote
by 𝑔−1 the inverse of this function if an inverse exists and
otherwise denoting the preimage. By dom(𝑔) we refer to the
domain of the function (in this case 𝐴). We denote by 𝑔† the
Moore–Penrose pseudo-inverse of a linear function 𝑔. We use
the Iverson bracket notation J⋅K, where the value is 1 if the
expression between the brackets is true, and 0 otherwise.

In this work, we shall consider star-shaped sets, which are
defined as follows:

Definition II.1 (Star-shaped Set and MGFs). We call a closed
compact set 𝐾 ⊆ ℬ star-shaped if there exist (i) 𝜍 ∈ 𝐾 ,
and (ii) a unique function 𝜚 ∶ 1 → ℝ+, such that:
𝐾 =

⋃

𝑙∈1
[𝜍, 𝜍 + 𝜚(𝑙)𝑙] where 1 denotes the unit ball in

ℬ. We call 𝜚 a Minkowski gauge function (MGF), and 𝜍 the
star center.

B. Problem Formulation
Consider a known nonlinear control-affine system of the

form of
𝑥̇(𝑡) = 𝑓 (𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢(𝑡), (1)

where 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈 ⊆ 𝒰 , 𝑋 and 𝒰 are Hilbert spaces, and
𝑓 ∶ 𝑋 → 𝑋 and 𝑔 ∶ 𝑋 → (𝒰 , 𝑋). In this work, we assume
𝒰 = ℝ𝑚. In addition, we assume that 𝑈 is a star-shaped subset
of ℝ𝑚 such that span 𝑈 = ℝ𝑚. Finally, we assume that the
full-state of the degraded system,

̇̄𝑥(𝑡) = 𝑓 (𝑥̄(𝑡)) + 𝑅𝑔(𝑥̄(𝑡))𝑃𝑢(𝑡), (2)

is known without error.
In system (2), a control action degradation map 𝑅 can

model changes in the control allocation function 𝑔, which may
include actuator reconfiguration, such as a change in the trim
angle on aircraft control surfaces, or misalignment of actuators
due to manufacturing imperfections or wear and tear. Since 𝑅
acts after 𝑔, it does not directly remap the control signal 𝑢(𝑡),
but it changes the action of a control input on the system; we
therefore talk about control effectiveness, as opposed to control
authority in the case of 𝑃 , which acts before 𝑔. Changes in
the drift dynamics 𝑓 (𝑥(𝑡)) will not be treated in this work.

In addition to identifying or approximating CDM 𝑃 , we are
interested in ‘undoing’ the effects of control authority degra-
dation as much as possible. In particular, we are interested
in the set of control signals (1) that can still be replicated in
(2) when the CDM is acting; we call this the set of viable
control inputs, 𝑈v. With knowledge of 𝑃 , we develop in
this work a method to obtain, for 𝑢cmd ∈ 𝑈v, 𝑢v such that
𝑃𝑢v = 𝑢cmd; here, 𝑢cmd and 𝑢v are called commanded and
viabilized control inputs, respectively. This approach is closely



related to a technique known in the literature as fault hiding
[7]. Fault hiding is achieved by introducing an output observer
based on the output of the degraded system, and augmenting
the nominal system model by introducing so-called virtual
actuators, which requires a nonlinear reconfiguration block that
is strongly dependent on the underlying problem structure and
failure modes [7, §3.6, p. 42]. In the setting considered in this
work, we show that we can adopt the fault hiding philosophy
under much less stringent constraints for a general class of
systems and degradation modes.

In this work, we are interested in modeling unknown
degraded system dynamics (2) for a time-invariant control
authority degradation map (CDM) 𝑃 ∶ 𝑈 → 𝑈̄ , and no
control effectiveness degradation (i.e., 𝑅 = 𝐼). This amounts
to reconstructing, or identifying, 𝑃 :

Problem 1 (Identifiability of Control Authority Degradation
Maps). For a class of time-invariant CDMs  ∈ 𝑃 , if possible,
identify 𝑃 based on a finite number of full state, velocity, and
control input observations (𝑥̄(𝑡), ̇̄𝑥(𝑡), 𝑢(𝑡)) of the degraded
system.

Ideally, we would like to identify general nonlinear CDMs
with known bounds on the approximation error. We illustrate
the control authority degradation modes that are covered in
this work in Fig. 1.

We now proceed by solving Problem 1 for an unknown
multi-mode affine CDMs, which allows for approximating
Lipschitz continuous nonlinear CDMs with bounded error.

III. IDENTIFIABILITY OF CONTROL AUTHORITY
DEGRADATION MAPS

We now consider Problem 1. Let us assume that for 𝑈 , the
Minkowski gauge function 𝜚 is known. Let 𝑃 ∶ 𝑈 → 𝑈̄ be
an unknown control authority degradation map (CDM). We
assume that 𝑈̄ is also a star-shaped set, providing conditions
on 𝑃 and 𝑈 under which this holds. It bears mentioning that
star-shaped sets are more general than convex sets; most results
presented in this work will apply to star-shaped sets, which
include polytopes, polynomial zonotopes, and ellipsoids.

Before we provide any results on the identifiability of
control authority degradation modes, we pose the following
key assumption on the nominal system dynamics (1). We allow
for an infinite-dimensional state-space 𝑋, that is to say, 𝑋 is
a set of functions, but 𝑋 = ℝ𝑛 is also captured:

Assumption 1. For system (2), assume that
i. 𝑔(𝑥) has closed range for all 𝑥 ∈ 𝑋;

ii. 𝑔(𝑥) is injective for all 𝑥 ∈ 𝑋, i.e., ker(𝑔(𝑥)) = {0};
iii. 𝑥̇ is known at some 𝑥 ∈ 𝑋 with 𝑢 = 0.

Remark 1. In the case of finite-dimensional systems, i.e., 𝑋 ⊆
ℝ𝑛, the first two conditions of Assumption 1 can be stated as:

i. The system is not overactuated, i.e., 𝑚 ≤ 𝑛;
ii. 𝑔(𝑥) is of full-column rank for all 𝑥 ∈ 𝑋.
We shall consider the case of multiple control degradation

modes acting throughout the space 𝑈 . The simplest of the
so-called conditional control authority degradation modes (c-
CDMs) acts only on a compact subset of 𝑈 ; we refer to these

c-CDMs as partial control authority degradation modes (p-
CDMs). Consider two compact star-shaped sets 𝑈̌ , 𝑈̂ ⊆ 𝑈 ,
and two p-CDMs 𝑃𝑈̌ (𝑢) ∶= 𝑢 + J𝑢 ∈ 𝑈̌K(𝑃 − 𝐼)𝑢, 𝑃𝑈̂ (𝑢) ∶=
𝑢 + J𝑢 ∉ 𝑈̂K(𝑃 − 𝐼)𝑢, for some control degradation map 𝑃 .
Here, 𝑃𝑈̌ is an internally acting partial CDM (i.e., acting
inside 𝑈̌ ), whereas 𝑃𝑈̂ is an externally acting partial CDM
(acting outside 𝑈̂ ); when this distinction is immaterial, we
use a combined hat and check symbol (e.g., 𝑈̌̂ ), where 𝑈̌̂ is
simply called the affected set of control inputs.

In reconstructing an 𝑁-mode c-CDM, we face the problem
of discerning which control inputs belong to which conditional
degradation mode. To make this problem tractable, we pose
the following assumption:

Assumption 2. Let the internally acting 𝑁-mode c-CDM
satisfy the following properties:

i. The number of modes 𝑁 is known;
ii. ̌ is a family of convex sets;

iii. ̌ is a family of affine maps denoted by 𝑄𝑖 = 𝑝𝑖 + 𝑃𝑖.
iv. There exists a known 𝛿 > 0, such that for all 𝑖 ≠ 𝑗,

𝑑H
(

(𝑈̌𝑖, 𝑃𝑖𝑈̌𝑖), (𝑈̌𝑗 , 𝑃𝑗𝑈̌𝑗)
)

≥ 𝛿.

Assumption 2.iv ensures that the graph of any conditional
CDM is sufficiently distinct from any other CDM to allow for
distinguishability. We are also interested in obtaining outer-
approximations of 𝑈̌ and inner-approximations of 𝑈̂ for each
degradation mode, as illustrated in Fig. 2, so that we can
restrict control inputs to regions that are guaranteed to be
unaffected. Since we only have access to a finite number
of control input samples, we pose the following assumption
regarding the regularity of the MGF associated with 𝑃 𝑈̌̂ .

Assumption 3. Assume that 𝑈̌̂ has star center 𝜍̌̂ = 0, and
assume that the MGF 𝜚̌̂ associated with 𝑈̌̂ is Lipschitz con-
tinuous, i.e., there exists a known 𝐿̌̂ such that |𝜚̌̂(𝑙) − 𝜚̌̂(𝑙′)| ≤
𝐿̌̂‖𝑙 − 𝑙′‖, for all 𝑙, 𝑙′ ∈ 1.

We now proceed to show that Assumption 3 holds for the
image of Lipschitz star-shaped sets under affine maps.

Lemma 1. Given a star-shaped set 𝑈 characterized by a
Lipschitz MGF 𝜚 and star center 𝜍, the range of 𝑈 under
an affine map 𝑄𝑢 ∶= 𝑝 + 𝑃𝑢 is also a star-shaped set with
Lipschitz MGF.

We can now pose a key result on the guaranteed approxi-
mation of Lipschitz MGFs from a finite set of samples.

Proposition 1. Assume that Assumption 3 holds for the
unknown MGFs 𝜚̌ and 𝜚̂. Then, for some given 𝑢̌, 𝑢̌′ ∈ 𝑈̌
and 𝑢̂, 𝑢̂′ ∉ 𝑈̂ , we have for all 𝜇 ∈ [0, 1]:

𝜚̌
(

𝜇𝑙 + (1 − 𝜇)𝑙′

‖𝜇𝑙 + (1 − 𝜇)𝑙′‖

)

≤

min
{

‖𝑢̌‖ + (1 − 𝜇)𝐿̌‖𝑙 − 𝑙′‖, ‖𝑢̌′‖ + 𝜇𝐿̌‖𝑙 − 𝑙′‖
}

,
(3)

and

𝜚̂
(

𝜇𝑙 + (1 − 𝜇)𝑙′

‖𝜇𝑙 + (1 − 𝜇)𝑙′‖

)

≥

max
{

0, ‖𝑢̂‖ − (1 − 𝜇)𝐿̂‖𝑙 − 𝑙′‖, ‖𝑢̂′‖ − 𝜇𝐿̂‖𝑙 − 𝑙′‖
}

,
(4)

where 𝑙̌̂ ∶= 𝑢̌̂∕‖𝑢̌̂‖ and 𝑙̌̂′ ∶= 𝑢̌̂′∕‖𝑢̌̂′‖.



Fig. 2: Comparison between inner- and outer-approximations
of 𝑈̂ and 𝑈̌ respectively, based on Proposition 1 and The-
orem 1 for a 1-mode c-CDM. The region with top-right-
pointing hatching indicates the set in which the control input
is unaffected; the red-colored region indicates the affected set.
The respective approximations of 𝑈̌̂ allow one to find regions
in which control inputs are guaranteed to be unaffected. In the
left image, the set indicated by top-left-pointing hatching is
an inner-approximation of 𝑈̂ , and in the right image this set
is an outer-approximation of 𝑈̌ .

Proof. This result follows directly from non-negativity of
the MGF and the mean value theorem, given the Lipschitz
continuity of 𝜚̌̂ as assumed in Assumption 3. □

The results given in Proposition 1 allow for direct inner-
approximation of 𝑈̂ and outer-approximation of 𝑈̌ through
guaranteed interpolation; these results will allow us to restrict
closed-loop control inputs to a subset of 𝑈 that is guaranteed
to be unaffected by 𝑃 as illustrated in provided in Fig. 2.
The method for approximating 𝑈̌̂ will be rigorized in the next
theorem.

We now pose the main result on the identifiability of 𝑁-
mode conditional control authority degradation modes (c-
CDMs), where multiple affine CDMs act on disjoint subsets of
𝑈 ; this will allow us to approximate of Lipschitz continuous
CDMs as shown at the end of the next section.

Theorem 1 (Reconstructing 𝑁-mode Affine c-CDMs). Con-
sider system (2) and Assumptions 1–2. Assume that the c-
CDM is represented by 𝑁 unknown internally acting affine
maps 𝑄𝑖, each acting on mutually disjoint unknown star-
shaped sets 𝑈̌𝑖 ⊆ 𝑈 , giving 𝑄̌ as the p-CDM. Let there be a
given array of distinct state–input pairs [(𝑥̄[𝑖], 𝑢[𝑖])]𝑁𝑖=1, and a
corresponding array of degraded velocities [ ̇̄𝑥[𝑖]]𝑁 ′

𝑖=1 obtained
from system (2), with 𝑁 ′ ≥ 𝑁(𝑚+1). Let there also be a given
array of undegraded state–input pairs [(𝑥∗[𝑖], 𝑢∗[𝑖])]𝑀𝑖=1, with
𝑀 ≥ 𝑚. Assume that there exist 𝑚 state–input pairs indexed
by 𝚥 and 𝚥∗, such that the arrays of input vectors {𝑢[𝚥𝑗]}𝑚𝑗=1
and [𝑢∗[𝚥∗,𝑗]]𝑚𝑗=1 are linearly independent.

The CDM 𝑄̌ can then be approximated as follows:

𝑄̃̌ 𝑢 =

⎧

⎪

⎨

⎪

⎩

𝑢 𝑢 ∉ 𝑈̌outer ,
∑𝑁

𝑖=1J𝑢 ∈ 𝑈̌𝑖,innerK𝑄𝑖𝑢 𝑢 ∈ 𝑈̌inner ,
inconclusive 𝑢 ∈ 𝑈̌outer ⧵ 𝑈̌inner ,

(5)

Proof. We cluster the array [(𝑢[𝑖], 𝑢̌̂[𝑖])]𝑁 ′

𝑖=1 into 𝑁 clusters
with a Hausdorff distance of at least 𝛿 between each pair
of clusters. If each cluster 𝑖 contains at least 𝑚 vectors 𝑢[𝑖]
that are linearly independent, then (5) can be obtained. Here,

𝑈̌inner ∶=
⋃𝑁

𝑖=1 𝑈̌𝑖,inner and 𝑈̌outer ∶=
⋃𝑁

𝑖=1 𝑈̌𝑖,outer . Each 𝑄𝑖 is
obtained by considering for each cluster 𝑣𝑖 ∶= 𝑔†(𝑥̄[𝑗])( ̇̄𝑥[𝑗]−
𝑓 (𝑥̄[𝑗])) where index 𝑗 is not part of the array of linearly
independent inputs indexed by 𝚥, 𝐮 ∶= [ 𝑢[𝚥1]−𝑣𝑖 ⋯ 𝑢[𝚥𝑚]−𝑣𝑖 ] and
Δ𝐮 ∶=

[

𝑔†(𝑥̄[𝚥𝑗])( ̇̄𝑥[𝚥𝑗] − 𝑓 (𝑥̄[𝚥𝑗])) − 𝑢[𝚥𝑗] − 𝑣𝑖
]𝑚
𝑗=1 .. Linear

operator 𝑃𝑖 is obtained as

𝑃𝑖 = (𝐮 + Δ𝐮)𝐮𝖳(𝐮𝐮𝖳)−1. (6)

The translation 𝑝𝑖 is obtained as 𝑝𝑖 = 𝑣𝑗 −𝑃𝑖𝑢[𝑗], which yields
the 𝑖’th mode affine CDM 𝑄𝑖:

𝑄𝑖𝑢 ∶= 𝑝𝑖 + 𝑃𝑖𝑢. (7)

Here, each affected set is approximated as follows: In case
𝑈̌̂ 𝑖 is internally acting (i.e., 𝑈̌𝑖 = 𝑈̌̂ 𝑖), (3) yields an outer-
approximation to 𝜚̌𝑖 by taking a convex combination of the
𝑚 basis vectors {𝑙̌̂∗[𝚥∗,𝑗] = 𝑢∗[𝚥∗,𝑗]∕‖𝑢∗[𝚥∗,𝑗]‖}𝑚𝑗=1 and their
values. Similarly, for externally acting 𝑈̌̂ 𝑖 (i.e., 𝑈̂𝑖 = 𝑈̌̂ 𝑖),
(4) yields an inner-approximation to 𝜚̂𝑖 using 𝑚 basis vectors
{𝑙̌̂[𝚥𝑗]}𝑚𝑗=1. Inner- and outer-approximations satisfy the relation
𝑈̌̂ 𝑖,inner ⊆ 𝑈̌̂ 𝑖 ⊆ 𝑈̌̂ 𝑖,outer (cf. Fig. 2).

We first consider a globally acting affine CDM. We obtain
the closed-form expression of 𝑃𝑖, (6), by solving the quadratic
program min𝑃∈(𝑈,𝑈̄ ) ‖𝑃𝐮−(𝐮+Δ𝐮)‖2, which yields a unique
linear map 𝑃 that maps 𝐮 to 𝐮+Δ𝐮 as desired. The translation
term 𝑝𝑖 can be verified by direct substitution in (7), yielding
the affine map 𝑄𝑖.

In (6), since the inverse of 𝐮𝖳𝐮 must be taken, we require
both that 𝐮 is a square matrix, and 𝐮𝖳𝐮 is invertible. This is
achieved by considering 𝐮 ∈ ℝ𝑚×𝑚 of full column rank, as
guaranteed by the linear independence hypothesis.

Regarding 𝑔†(𝑥), the Moore–Penrose pseudo-inverse is de-
fined for a general Hilbert space 𝑋, provided that range(𝑔(𝑥))
is closed for all 𝑥 ∈ 𝑋 [8, §4.2, p. 47]. For 𝑔†(𝑥) to be a left-
inverse, a necessary condition is that 𝑔(𝑥) be injective, i.e.,
ker(𝑔(𝑥)) = {0} for all 𝑥 ∈ 𝑋 [8, Cor. 2.13, p. 36]. Finally,
the translation term 𝑝 is accounted for as well in (7).

To approximate the 𝑖’th affected set, 𝑈̌̂ 𝑖, we require a
spanning set of basis vectors that lie within 𝑈̌̂ 𝑖, as provided
for in the hypotheses. The unknown MGF associated with
𝑈̌̂ 𝑖 can be obtained according to Proposition 1 using (3)–(4),
where an inner-approximation is desired for internally acting
p-CDMs, and outer-approximations for externally acting p-
CDMs. These approximations are obtained through repeated
convex combinations and the corresponding inequality given
in (3)–(4), for a total of 𝑚 times; an explicit expansion of the
resulting expression is omitted here for the sake of space. □

Remark 2. This result incorporates p-CDMs that map a set
𝑈̌ to a constant, e.g., 𝑄̌ 𝑈̌ = 𝑝. To highlight the utility
of this result, it should be noted that the hypotheses given
here allow for commonly encountered degradation modes such
as deadzones and saturation to be modeled (see Fig. 1(4)).
Additionally, Theorem 1 allows for discontinuous control
authority degradation modes, a property that is rarely present
in prior work.

We can now consider the case in which 𝑃 is a Lipschitz
continuous CDM. We consider an approximation of 𝑃 by an



𝑁-mode affine c-CDM 𝑃 , for which we derive an explicit
error bound given that the Lipschitz constant of 𝑃 , 𝐿𝑃 , is
known.

Theorem 2 (Approximating Lipschitz continuous CDMs by
𝑁-mode Affine c-CDMs). Let the hypotheses of Theorem 1
hold, with the exception that 𝑃 ∶= 𝑄̌ is now an 𝐿𝑃 -Lipschitz
continuous CDM and Assumption 2 is now dropped. If 𝑁
clusters that satisfy the linear independence requirements of
Theorem 1 are identified, then the resulting 𝑁-mode affine
c-CDM approximation 𝑃 has the following error:

For all 𝑢 ∈ 𝑈̌𝑖,inner and all 𝑖 = 1,… , 𝑁 ,

‖𝑃𝑢 − 𝑃𝑢‖ ≤ ‖ min
𝑗=1,…,𝑚

𝜀𝑖,𝑗 + 𝐿𝑃 ‖𝑢[𝑖, 𝑗] − 𝑢‖, (8)

where 𝜀𝑖,𝑗 ∶= ‖𝑃𝐮𝑖[𝑗] − 𝑃𝑖𝐮𝑖[𝑗]‖, and 𝑢[𝑖, 𝑗] ∶= 𝐮𝑖[𝑗], where
𝐮𝑖 is an array composed of all control inputs in the 𝑖’th cluster.

Proof. The proof is similar to that of Theorem 1, with the error
bound (8) following an application of the triangle inequality in
combination with the Lipschitz continuity of 𝑃 , the properties
of the affine maps 𝑃𝑖, and the known samples of (𝑢, 𝑃 𝑢). □

We can now pose a convergence result on the 𝑁-mode affine
c-CDM approximation 𝑃 of a Lipschitz continuous CDM 𝑃 .
Corollary 1. Error bound (8) is monotonically decreasing in
the the number of samples 𝑁 ′ and the number of c-CDM
modes 𝑁 . In the limit of the 𝑁 ′, 𝑁 → ∞, error bound (8)
converges to zero.

Proof. In (8), 𝜀𝑖,𝑗 monotonically converges to zero, because
the operator norm ‖𝑃 − 𝑃𝑖‖ restricted to the 𝑖’th cluster con-
verges monotonically to zero; this fact follows by considering
that the diameter of each cluster converges to zero for a greater
number of samples and clusters, similarly to the proof of
Lemma 2, as well as the fact that 𝑃 is Lipschitz continuous,
meaning that the total variation of 𝑃 on this restriction
decreases monotonically as well. Another consequence of the
diminishing cluster diameter is that ‖𝑢[𝑖, 𝑗] − 𝑢‖ converges
monotonically to zero. □

In the results given above, we find that it is in general
impossible to uniquely determine each 𝑈̌̂ from finitely many
samples. Intuitively, given a greater number of distinct points
inside 𝑈̌̂ and 𝑈 ⧵ 𝑈̌̂ , it should be possible to more tightly ap-
proximate 𝑈̌̂ . This idea is illustrated in Fig. 3. We now state a
lemma on the convergence of inner- and outer-approximations
of the affected set 𝑈̌̂ .

Lemma 2. Consider 𝜖 > 0, such that a given set of 𝑁𝜖 ≥ 𝑚
distinct pairs (𝑢, 𝑃𝑈̌̂𝑢) denoted by 𝑈𝑁,𝜖 , satisfies Assump-
tions 1–3, where 𝑃𝑈̌̂ is (i) an 𝑁-mode affine c-CDM, or (ii)
a Lipschitz continuous CDM. Let 𝑈𝑁 be such that for each
𝑢𝑖 in 𝑈𝑁,𝜖 ,

⋃𝑁𝜖
𝑖=1𝜖(𝑢𝑖) ⊇ 𝑈̌̂ ; i.e., 𝜖-balls centered at each

sampled control input form a cover of 𝑈̌̂ . Let 𝑈̌̂𝑁𝜖
inner and 𝑈̌̂𝑁𝜖

outer
denote the corresponding inner- and outer-approximations of
𝑈̌̂ using the procedure given in Theorem 1 from 𝑈𝑁,𝜖 . Then,
we have 𝑈̌̂𝑁𝜖

inner ⊆ 𝑈̌̂𝑁𝜖′
inner ⊆ 𝑈̌̂ and 𝑈̌̂ ⊆ 𝑈̌̂𝑁𝜖′

outer ⊆ 𝑈̌̂𝑁𝜖
outer for all

𝜖′ < 𝜖. In addition, we have lim𝜖→0 𝑈̌̂
𝑁𝜖
inner = lim𝜖→0 𝑈̌̂

𝑁𝜖
outer =

𝑈̌̂ .

Fig. 3: Comparison between inner- and outer-approximations
of 𝑈̂ and 𝑈̌ respectively, based on Proposition 1 and Theo-
rem 1 for an increasing number of samples for a 1-mode c-
CDM. Clearly, for a larger number of points of sufficiently dis-
persed points, increasingly tight approximations are obtained
as formalized in Lemma 2.

Fig. 4: Illustration of the domain on which (9) acts. There
are three regions of degradation, of which the burned and the
vascularized region form two; the last region is not shown, but
saturates the 𝑢1 to 5.
Proof. Since it is assumed that the pairs in 𝑈𝑁,𝜖 are dis-
tinct, the approximations of 𝜚̌ and 𝜚̂ obtained in Theorem 1
will become increasingly tight for decreasing 𝜖, since the
expressions derived in Theorem 1 will rely increasingly less
on the Lipschitz bound assumption. Since 𝑑H(𝑈̌̂

𝑁𝜖
inner , 𝑈̌̂

𝑁𝜖
outer)

is monotonically decreasing for decreasing 𝜖, in the limit of
𝜖 → 0, both sequences will converge to 𝑈̌̂ in the Hausdorff
distance. This follows from the fact that the Hausdorff dis-
tance between the boundary of 𝑈̌̂ and the sampled points 𝑢
decreases monotonically with decreasing 𝜖, leading to tighter
approximations of 𝜚̂ and 𝜚̌ as per Proposition 1. □

IV. APPLICATION

We consider an infinite-dimensional system based on a 3D
model of tissue thermodynamics during electrosurgery [9]:

𝑧̇(𝑡, 𝜉) = 𝑎∇2𝑧(𝑡, 𝜉) + 𝑞(𝜉)𝑢1,
𝑑̇(𝑡) = 𝑧(𝑡, 1)𝑢2

(9)

where 𝑢 ∈ [0, 10] × [0, 1]. The unit heat source is modeled
as 𝑞(𝜉) = 1

𝜖 J𝜉 ∈ [0, 𝜖]K, for some known 𝜖 > 0. This model
approximates a slab of tissue with the state representing the
surface temperature; 𝑢1 denotes the input power and 𝑢2 denotes
the needle depth.



0 2 4
Time [s]

10−2

10−1

d
H

(Ǔ
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Fig. 5: Hausdorff distance error for the inner approximations
(left) and minimal covering radius (right) of the three affected
regions on which the c-CDM of (9) acts as a function of time.

For simplicity, we set the input power 𝑢1 = 1, and consider
only the needle depth 𝑢2 as the free control input. We can
express system (9) as affected by a CDM 𝑃 as:

𝑥̇(𝑡, 𝜉) =
[

𝑧̇(𝑡, 𝜉)
𝑑̇(𝑡)

]

=
[

𝑎∇2𝑥1(𝑡, 𝜉)
0

]

+
[

𝑞(𝜉) 0
0 1

]

𝑃
[

𝑢1
𝑢2

]

.

We consider a CDM of the form 𝑃𝑢 =
[

𝐼 𝑃12
0 𝐼

]

𝑢, where
𝑃12 is the map to be identified. We are interested in a 3-
mode piecewise linear CDM 𝑃12, with 𝑈̌1 = [0, 0.25], 𝑈̌2 =
[0.5, 0.75], and 𝑈̌3 = [0.75, 1]; these regions are illustrated
in Fig. 4. Region 1 corresponds to a charred region at the
top of the tissue where the needle does not fully contact the
tissue. Region 2 is a layer of pristine tissue, where the original
dynamics act. Region 3 is a layer of highly vascularized tissue,
in which a large fraction of heat that is added to the system
gets transported away. We consider a piecewise linear function
𝑃12𝑝 ∶= (0.25 + 3𝑝)J𝑝 < 0.25K + J0.25 ≤ 𝑝 ≤ 0.75K + (2.5 −
2𝑝)J𝑝 > 0.75K. We consider a sinusoidal control signal for
the probe depth with a period of 0.3 seconds, 𝑢2(𝑡) = (1 −
cos(20𝜋𝑡∕3))∕2, and a state–input sampling frequency of 20
Hz. We assume stochastic sampling periods, where the time
is perturbed with a uniform 0.01 second error to model signal
processing delays. The underlying goal of this application is
to perform passive probing of the affected tissue layers and
reconfigure the thermodynamics model to account for tissue
damage, as is commonly encountered in electrosurgery. Fig. 5
shows on the left the Hausdorff distance between each affected
region over time to show that approximations become tighter
with time, according to the decreasing minimal covering radius
𝜖 (right), as shown in Lemma 2. After three samples in each
region, we uniquely identify the appropriate affine map, but the
inner-approximation of the affected region is refined passively
over time.

V. CONCLUSION

In this work, we have introduced the concept of a control
authority degradation map (CDM). We have proved conditions
on the identifiability of a broad class CDMs, including 𝑁-
mode affine CDMs and Lipschitz continuous CDMs, for a class
of affine-in-control nonlinear systems. Based on the identifi-
ability results, we have formulated a constructive method for
reconstruction or approximating CDMs, with explicit bounds
on the approximation error. Our CDM identification method
is executable in real time, and is guaranteed to monotonically
decrease in error as more full-state observations become

available. In future work, we aim to incorporate stochastic
process and output noise into the presented framework.
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