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Abstract: This work presents a computationally efficient approach to robustly linearized model
predictive control for nonlinear affine-in-control evolution equations on infinite-dimensional
system state. In this setting, robust linearization refers to a need to account for the approxi-
mation errors in linearization and discretization in the model predictive control law, such that
the original output constraints are not violated on the true system, a feature that present
model predictive control frameworks lack. The main purpose of this work is to enable tractable
model predictive control for nonlinear distributed parameter systems while accounting for these
approximation errors by means of output constraints. These output constraints are derived using
tight integral inequalities that rest on mild assumptions on the nonlinear system dynamics, and
are easy to evaluate in real-time. Using our method, linearization and discretization errors are
explicitly accounted for, producing for the first time a model predictive control law that is
robust to approximation errors. This approach hence enables a trade-off between computational
efficiency and strictness of output constraints, much akin to robust control methods. We
demonstrate our method on a nonlinear distributed parameter system, namely a one-dimensional
heat equation with a velocity-controlled moveable heat source, motivated by autonomous energy-
based surgery.

Keywords: Model predictive control for distributed parameter systems, uncertain systems,
constrained control.

1. INTRODUCTION

The notion of optimal control for infinite-dimensional or
distributed parameter systems has received considerable
attention in the literature (Dubljevic et al., 2006; Hu-
maloja and Dubljevic, 2018; Dubljevic and Humaloja,
2020), most often in the context of linear systems. A com-
mon approach is to discretize such an infinite-dimensional
linear system in time and space, thereby obtaining an ap-
proximate discrete-time spatially discretized formulation
of the system dynamics that is directly amenable to opti-
mal control methods for linear systems such as model pre-
dictive control (MPC) with quadratic cost. While model
order reduction of this form produces tractably solvable
control problems, there exist no general guarantees that
the infinite-dimensional continuous-time system will con-
⋆ This work was supported by NASA grant no. 80NSSC21K1030 and
NASA ULI project “Robust and Resilient Autonomy for Advanced
Air Mobility,” as well as the National Institute of Biomedical Imaging
and Bioengineering of the National Institutes of Health under award
number R01EB029766.

verge to the control objective, or even be stable, when
subjected to such a reduced-order control law. Some past
work has aimed to derive a class of finite-dimensional
controllers for infinite-dimensional linear systems that are
robust under bounded changes in the dynamics (Paunonen
and Phan, 2020), thereby providing a possible avenue for
accounting for discretization errors. However, this line of
work imposes strong assumptions on the type of model
order reduction, namely Galerkin approximations, which
may be prohibitive to abide by in practice and intractable
to implement for general systems. The need for spatial
discretization was first lifted by Humaloja and Dubljevic
(2018); Dubljevic and Humaloja (2020), where the Cayley–
Tustin transform was used for time discretization, and an
MPC problem was formulated by penalizing the finite-
dimensional output and input. Following results from
(Havu and Malinen, 2007), a stabilizing control law for
the discrete-time system was shown to also stabilize its
continuous-time counterpart, thus allowing for classical
results in MPC theory to be leveraged directly. However,
the resulting method is only applicable to linear systems,



and may be intractable to implement because of a reliance
on resolvent operators for infinite-dimensional systems. In
Toledo et al. (2020) and Wu et al. (2021), methods for
reduced-order observer and controller design are presented
for Port–Hamiltonian systems, based on the assumption
that an approximate reduced-order dynamical model is
available; however, these approaches are limited to linear
systems and hinge on the key assumption of the availability
of a controllable reduced-order approximation of the PDE.

In this work, we formulate a novel model predictive control
method for nonlinear infinite-dimensional systems, termed
as robustly linearized model predictive control (RoLiMPC),
which greatly simplifies the implementation process by
introducing an approximate Cayley–Tustin transform in
which the resolvent operator is approximated by a trun-
cated series expansion. Most importantly, our method is
robust to linearization and discretization errors by means
of analytical error bounds that are used to tighten the
output constraints, such that the control law is guaranteed
to honor the original output constraints when applied to
the original nonlinear system. Doing so presents a major
improvement over prior work, where the only convergence
proofs provided are asymptotic in the discretization time
step (Dubljevic and Humaloja, 2020), and only small non-
linearities may be captured (Paunonen and Phan, 2020).
The approximation error bounds in our work are based
on a combination of a truncated Neumann series approx-
imation of the resolvent operator, as well as a modified
version of an integral inequality known as the Bihari in-
equality based on mild assumptions on the regularity of
the system dynamics (El-Kebir and Ornik, 2021; El-Kebir
et al., 2022a). The resulting optimization problem that
solves for the optimal control signal is finite-dimensional
and tractable, requiring only the derivation of the explicit
adjoint operators belonging to the linearized system dy-
namics.

Note that formal proofs have been omitted due to space
constraints; proofs will be provided in a future publication.

2. PRELIMINARIES

Let L(X,Y ) denote the set of bounded linear operators
between normed spaces X and Y . For any two x, x′ ∈ X,
let [x, x′] denote the set of all convex combinations between
x and x′. For a bounded linear operator T ∈ L(X,Y ), let
T ∗ ∈ L(Y,X) denote its adjoint. For a set K ⊆ X, let
χK denote is characteristic function. Let Hk(X) denote
the Sobolev space of order k defined by the L2-norm.
Let D(A), R(A), N (A), σ(A), ρ(A) := C \ σ(A) denote
the domain, range, kernel, spectrum, and resolvent of A,
respectively. For some x ∈ X ∋ 0 and r ∈ R+ := {a ∈ R :
a ≥ 0}, let B(r, x) denote a closed ball of radius r centered
at x; if x = 0, we write B(r) := B(r, 0). We denote by −δξ the
Dirac delta function centered at ξ and by φξ the evaluation
map φξf = f(ξ) for some function f with ξ ∈ D(f). For a
linear operator A : D(A) ⊆ X → X and a fixed λ0 ∈ ρ(A),
we define the scale spaces (Tucsnak and Weiss, 2009, p. 59,
Sec. 2.10)

X1 := (D(A), ∥(λ0 −A) · ∥), (1)

X−1 := (X, ∥(λ0 −A)−1 · ∥), (2)

which satisfy X1 ⊆ X ⊆ X−1. Let A−1 ∈ L(X,X−1)
denote the Yosida extension of A ∈ L(X,X) to X−1, i.e.,

the unique linear extension of A to L(X,X−1) (Weiss,
1994, p. 26). For ease of exposition, we will write for any
s ∈ C, (s − A) = (sI − A), understanding that I is the
identity operator defined in the appropriate space.

We briefly recount the notion of Fréchet differentiability
(Munkres, 1991, Sec. 5, p. 41).
Definition 1 (Fréchet Differentiability). A function f :
U ⊆ X → Y , where X and Y are normed vector spaces,
and U is open, is Fréchet differentiable at x ∈ U if there
exists A ∈ L(X,Y ) such that:

lim
∥h∥→0

∥f(x+ h)− f(x)−Ah∥Y
∥h∥X

= 0. (3)

We may now define the robustly linearized model predic-
tive control problem. For the sake of brevity, we consider
in this work nonlinear affine-in-control regular nonlinear
systems (Natarajan and Bentsman, 2016), i.e., systems
that produce regular linear systems (Weiss, 1994) when
linearized. The robustly linearized model predictive con-
trol problem is formalized as follows:
Problem 1. Consider a nonlinear affine-in-control dy-
namical system of the form

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) = x0,

y(t) = Cx(t) +Du(t),
(4)

where f : D(f) ⊆ X → X and g ∈ D(g) ⊆ U → X are
Fréchet differentiable, C ∈ L(X,Y ), and D ∈ L(U, Y ).
X, Y , U are assumed to be separable Hilbert spaces.
In addition, assume dimY < ∞ and dimU < ∞, with
U ⊆ B(Mu) where B(Mu) is a closed ball with known
radius Mu > 0.

Across a time horizon T > 0, given some sampling period
h ∈ (0, T ] such that T/h =: N ∈ N, produce a control
signal u∗ : [0, T ] → U that solves a linear finite-horizon
model predictive control problem:

(u∗[k])N−1
k=0 = arg min

(u[k])N−1
k=0

N−1∑
k=0

⟨y[k], Qy[k]⟩+ ⟨u[k], Ru[k]⟩

+ ⟨y[N ], Sy[N ]⟩,
(5)

subject to

u[i] ∈ Ūi ⊆ U, y[i] ∈ Ȳi ⊆ Y (6)

for all i = 0, . . . , N−1, where Ūi and Ȳi are compact convex
sets, and Q, R, S are positive self-adjoint operators. u∗(t)

is the zero-order hold continuization of (u∗[k])N−1
k=0 . Here,

[k] = kh, and y(t) is given by a linearized and discretized
approximation of (4) such that (5) is a quadratic program.

In order to tractably solve Problem 1, we make the
following mild assumption on the regularity of the Fréchet
derivatives of f and g in (4):
Assumption 1. For x, x′ ∈ X, the Fréchet derivative on
f satisfies the following inequality:

∥D2f(x)−D2f(x′)∥ ≤ wf (∥x− x′∥), (7)

and g satisfies:

∥Dg(x)−Dg(x′)∥ ≤ wg(∥x− x′∥), (8)

where wf : R+ → R+ and wg : R+ → R+ are continuous,
monotonic, nondecreasing, convex functions.

In order to solve Problem 1, we broadly trace the follow-
ing steps: (1) account for truncation error for resolvent



operator, yielding the discretization error; (2) account for
linearization error using an overapproximate differential
inclusion, and use this error to construct a bound on the
linearization error using the Bihari inequality; (3) tighten
the original MPC output constraints by the sum of the
discretization and linearization error bounds; (4) solve
constrained LMPC using a modified version of the method
by Dubljevic and Humaloja (2020).

In the remainder of this work, we will make use of the
Neumann series expansion to approximate the resolvent
operator of a bounded linear functional.
Lemma 1 (Neumann Series). Let A ∈ L(X), such that
∥A∥ < 1. Let R(λ,A) : C × L(X) → L(X) denote the
resolvent operator, which is defined by

R(λ,A) := (λ−A)−1. (9)

Then, the resolvent operator is characterized by the follow-
ing convergent Neumann series:

R(λ,A) =

∞∑
i=0

An. (10)

A key tool in producing nonlinear integral inequalities
that will be leveraged extensively is the Bihari inequality,
extended to the controlled case by El-Kebir and Ornik
(2021).
Theorem 1 (Extended Bihari inequality (El-Kebir and
Ornik, 2021, Theorem 3.1)). Let x(t) be a solution to the
equation

ẋ = h(t, x, u), x(t0) = x0, 0 ≤ t0 ≤ t < ∞,

where h(t, x, u) : [t0,∞) × X × U → X is continuous for
t0 ≤ t < ∞, and U is compact and finite-dimensional and
satisfies maxu∈U ∥u∥ = Mu. Assume that

∥h(t, x, u)∥ ≤ a(t)w(∥x∥, ∥u∥) + b(t),

for all x ∈ X, u ∈ U , t0 ≤ t < ∞, where a, b are
continuous and positive and w is continuous, monotonic,
nondecreasing and positive. In addition, w is uniformly
monotonically nondecreasing in ∥u∥.
Then,

∥x(t)∥ ≤ G−1

[
G

(
∥x(t0)∥+

∫ t

t0

b(τ)dτ

)
+

∫ t

t0

a(τ)dτ

]
,

(11)
where the expression on the right-hand side is strictly
increasing in t. In (11), we define

G(r) :=

∫ r

r0

ds

w(s,Mu)
, r > 0, r0 > 0,

for arbitrary r0 > 0 and for all t ≥ t0 for which it holds
that

G

(
∥x(t0)∥+

∫ t

t0

b(τ)dτ

)
+

∫ t

t0

a(τ)dτ ∈ dom(G−1).

We now proceed by introducing the Cayley–Tustin method
of time discretization, for which we produce approxima-
tions with tight analytical error bounds that are readily
evaluated.

3. NONLINEAR CAYLEY–TUSTIN TIME
DISCRETIZATION

We can now define the nonlinear Cayley–Tustin time dis-
cretization, and pose an error bound to account for the

linearization error. Time discretization is instrumental in
formulating tractable optimization problems, since the so-
lution of a discretized finite-horizon optimization problem
will be a finite-dimensional vector, as opposed to a func-
tion. In addition, the Cayley–Tustin discretization (Havu
and Malinen, 2007) method allows us to forgo spatial
discretization, which is a source of additional errors. In its
original form, the Cayley–Tustin discretization scheme is
only defined for linear systems, and requires the evaluation
of a resolvent operator that is hard to evaluate in general.
We propose a novel linearized approximate discretization
scheme, for which we prove tight approximation error
bounds that can readily be evaluated.

The Cayley–Tustin scheme required evaluation of the
resolvent operator R(λ,A) := (λ − A)−1, which is often
prohibitive to obtain analytically except in the case of
one-dimensional linear systems (Dubljevic and Humaloja,
2020). We therefore proceed by deriving a finite series
approximation result for this operator with known sharp
truncation error bounds:
Proposition 1 (Approximation of the Resolvent Opera-
tor). Let A ∈ L(X), and let λ ∈ R+ \ {0}. If ∥A/λ∥ :=
sup x∈X

∥x∥=1
∥Ax/λ∥ < 1, then

R(λ,A) = λ−1
∞∑
i=0

(A/λ)i, (12)

which is a convergent Neumann series. Let ϵ ∈ (0, 1) be

given. Then λ ≥ ∥A∥
1−ϵ ensures that the truncated Neumann

series

RN (λ,A) := λ−1
N−1∑
i=0

(A/λ)i (13)

has truncation error

∥R(λ,A)−RN (λ,A)∥ ≤ λ−1 (1− ϵ)N

ϵ
. (14)

We may now bound the approximation error over discrete
time steps due to truncation of the resolvent operator as
follows.
Proposition 2 (Approximate Linearized Cayley–Tustin
Discretization). Considering the Cayley–Tustin discretiza-
tion given by Havu and Malinen (2007) and the finite
series approximation to the resolvent operator from Propo-
sition 1, we find that for some given N ∈ N and x0 ∈ X,
the approximate linearized discrete system given by

∆x̂[k] = Âx0,δ∆x̂[k − 1] + B̂x0,δu[k], x̂[0] = x0

y[k] = Ĉx0,δx̂[k − 1] + D̂x0,δu[k], k ≥ 1,
(15)

where ∆x̂[j] := x̂[j]− x̂[0] for all j ≥ 0, and

Âx0,δ = (δ +Ax0
)RN (δ, Ax0

), (16a)

B̂x0,δ =
√
2δRN (δ, Ax0

)Bx0
, (16b)

Ĉx0,δ =
√
2δCRN (δ, Ax0

), (16c)

D̂x0,δ = Ĝ(δ), (16d)

where

Ĝ(s) := CRN (s,Ax0
)Bx0

+D, (17)

satisfies



∥∆x[k]−∆x̂[k]∥ ≤ ∥Âx0,δ∥∥∆x[k − 1]−∆x̂[k − 1]∥
+ (1 + ∥Ax0

∥/δ)[(1− ϵ)N/ϵ]∥∆x̂[k − 1]∥
+
√

2/δ∥Bx0
∥[(1− ϵ−1)

N/ϵ−1]∥u[k]∥,
(18)

for k ∈ N, where ϵ, ϵ−1 ∈ (0, 1) are such that ∥Ax0/δ∥ ≤
1− ϵ and ∥(Ax0)−1/δ∥ ≤ 1− ϵ−1.

We can expand the recurrence relation given in Proposi-
tion 2 to obtain a bound for the discretization error as
shown next.
Corollary 1. Assuming u[k] ∈ U ⊆ B(Mu) for some
Mu ≥ 0, we have

∥∆x[k]−∆x̂[k]∥ ≤ αk
1∥∆x[0]−∆x̂[0]∥

+

k−1∑
i=0

αk−1−i
1 α2γ[i] + αi

1βMu =: η̂[k],

(19)

where

α1 := ∥Âx0,δ∥, α2 := (1 + ∥Ax0
∥/δ)[(1− ϵ)N/ϵ], (20a)

β :=
√
2/δ∥Bx0

∥[(1− ϵ)N/ϵ], (20b)

γ[k] := ∥Âx0,δ∥k∥∆x̂[0]∥+
k−1∑
i=0

∥Âx0,δ∥i∥B̂x0,δ∥Mu (20c)

where the definition of β follows from the fact that ϵ = ϵ−1.
For discretization time h > 0, we can define the continuous
function η̂(t) as follows:

η̂(t) :=

{
0, t ≤ 0,

η̂[⌈t/h⌉], otherwise.
(21)

Having obtained a means of approximating the resolvent
operator with a tight upper bound on the operator norm
error, we wish to study the error introduced by linearizing
f and g.

4. ROBUSTLY LINEARIZED MODEL PREDICTIVE
CONTROL

In this section we present the robustly linearized model
predictive control method for nonlinear control-affine sys-
tems on Hilbert spaces. As in the classical model predictive
control setting, we wish to obtain a control signal that
achieves quadratically optimal performance, while adher-
ing to output and control input constraints (see Prob-
lem 1). Given the prohibitiveness of nonlinear MPC in
the case of general infinite-dimensional control systems,
we have chosen to linearize the system. If this linearized
continuous-time system were to be employed in an MPC
setting, the resulting optimization problem would have the
form of a generalized Hamilton–Jacobi–Isaacs equation,
with the solution involving a partial differential equation
over a Hilbert space. Since such an equation is prohibitive
to solve even in the finite-dimensional case, we have chosen
to discretize the linearized system in time, resulting in a
finite-dimensional (convex) quadratic program that solves
the underlying MPC problem.

In the process described above, we have accrued both
linearization and discretization errors, which should be
incorporated in the output constraints to achieve safe
control. The first part of this section provides a closed
form tight upper bound to the approximation error, which

can be computed efficiently online. This upper bound will
be used to tighten the original MPC constraints so as
to achieve a notion of robustly linearized MPC, where
robustness refers to robustness to approximation of the
dynamics, i.e., linearization and discretization.

4.1 Approximation Error Bound

We first consider the approximation error, which consists
of components due both to linearization and discretization.
Given Assumption 1, we find the following guaranteed
differential inclusion:
Proposition 3. For system (4) satisfying Assumption 1,
we obtain the following differential inclusion:

ẋ(t) ∈ Ax0
∆x(t) +Bx0

u(t)

+ f(x0) + B(wf (∥∆x(t)∥), ∥D2f(x0)∥)∥∆x(t)∥2/2
+ B(wg(∥∆x(t)∥), ∥Dg(x0)∥)∥x(t)∥u(t).

(22)

From the inclusion of Proposition 3, we can now derive a
bound on the error dynamics between system (4) and its
linearized counterpart:

∆ ˙̄x(t) = Ax0
∆x̄(t) +Bx0

ū(t), ∆x̄(0) = 0,

∆ȳ(t) = C∆x̄(t) +Dū(t).
(23)

Proposition 4. For system (4) satisfying Assumption 1,
the error dynamics between its solution and that of the
linearized system (23) for u(t) = ū(t), defined as ∆ ˙̃x(t)
where ∆x̃(t) := ∆x(t)−∆x̄(t), is characterized as follows:

∥∆ ˙̃x(t)∥ ≤ aT(t)w(∥∆x̃(t)∥) + b(t), (24)

where

a(t) :=



1
∥∆x̄(t)∥
∥∆x̄(t)∥2
∥ū(t)∥

∥ū(t)∥∥∆x̄(t)∥
wf (∥∆x̄(t)∥)

wf (∥∆x̄(t)∥)∥∆x̄(t)∥
wg(∥∆x̄(t)∥)∥ū(t)∥


,

w1(∥∆x̃(t)∥) := ∥Ax0∥∥∆x̃(t)∥+ [∥D2f(x0)∥
+ wf (∥∆x̃(t)∥)]∥∆x̃(t)∥2/2,

w2(∥∆x̃(t)∥) := [∥D2f(x0)∥+ wf (∥∆x̃(t)∥)]∥∆x̃(t)∥,
w3(∥∆x̃(t)∥) := ∥D2f(x0)∥/2 + wf (∥∆x̃(t)∥)/2,
w4(∥∆x̃(t)∥) := [∥Dg(x0)∥+ wg(∥∆x̃(t)∥)]∥∆x̃(t)∥,
w5(∥∆x̃(t)∥) := ∥Dg(x0)∥+ wg(∥∆x̃(t)∥),
w6(∥∆x̃(t)∥) := ∥∆x̃(t)∥2/2,
w7(∥∆x̃(t)∥) := ∥∆x̃(t)∥,
w8(∥∆x̃(t)∥) := ∥∆x̃(t)∥,

and

b(t) := ∥f(x0)∥+ [∥D2f(x0)∥+ wf (∥∆x̄(t)∥)]∥∆x̄(t)∥2/2
+ [∥Dg(x0)∥+ wg(∥∆x̄(t)∥)∥]∥ū(t)∥∥∆x̄(t)∥.

We can now explicitly formulate a possible linearization
error bound.
Corollary 2. From (24), it is straightforward to see that
all hypotheses of Thm. 1 are satisfied. If ∥x̄(t)∥ and ∥ū(t)∥
are both known, this yields an inequality of the form

∥∆x̃(t)∥ ≤ η̄(t),



where

η̄(t) := G−1

[
G

(
∥∆x̃(t0)∥+

∫ t

t0

b(τ)dτ

)
+

∫ t

t0

∥a(τ)∥dτ
]
,

(25)
and

G(r) :=

∫ r

r0

ds

∥w(s)∥
, r > 0, r0 > 0. (26)

The discretization error has been derived in Corollary 1.
Given the linearization and discretization errors, we may
now present an upper bound for the total approximation
error.
Theorem 2. The output error due to linearization and
discretization truncation errors is tightly bounded as fol-
lows

∥∆x̃(t)∥ ≤ η̄(t) + η̂(t) =: η̃(t), (27)
where η̄ is given as in Corollary 2 and η̂ is defined in (21).
Proposition 5. For N → ∞ and h → 0 (equivalently,
δ → ∞), the approximation error η̃ converges to zero.

4.2 Constrained Optimization Problem

Based on the approximation error bound obtained in the
previous subsection, we can now pose the main constrained
optimization problem that underpins the robustly lin-
earized model predictive control framework. The resulting
model predictive control algorithm is robust to approxi-
mation errors due to linearization and discretization, as
shown in Theorem 2. In this section we will omit the x0

subscript for ease of exposition.
Theorem 3 (Robustly Linearized Model Predictive Con-
trol). Considering Problem 1 and a given horizon length
N , resolvent truncation length Nr, and operating point
x0 ∈ X, assume that Ū ⊆ U and Ȳ ⊆ Y are hyperrectan-
gular axis-aligned sets, i.e.,

(u[k])N−1
k=0 ∈ [umin,umax], (y[k])N−1

k=0 ∈ [ymin,ymax], (28)

where umin := (umin,k)
N
k=1 ∈ UN and ymin := (ymin,k)

N
k=1 ∈

Y N are given; umax and ymax are defined similarly. Let
m := dimY .

An approximate solution to Problem 1 that honors the
constraints of (28) is obtained by solving the following
constrained finite-dimensional quadratic program:

min
u∈UN

J(u, x0) = uTHu+ 2uTPx0, (29)

subject to I
−I
F
−F

u ≤


umax

umin

maxymax −Gx0 − ((η̃[k])mi=1)
N
k=1

min−ymin +Gx0 + ((η̃[k])mi=1)
N
k=1

 , (30)

where H ∈ L(UN ) is positive and self-adjoint, where

Hi,j :=


D̂∗

δQD̂δ + B̂∗
δSB̂δ +R, i = j,

D̂∗
δQĈδÂ

i−j−1
δ B̂δ + B̂∗

δSÂ
i−j
δ B̂δ +R, i > j,

H∗
j,i, i < j,

(31)

and P ∈ L(X,UN ) is defined as Pi,· := D̂∗
δQĈδÂ

i−1
δ +

B̂∗
δSÂ

i
δ. The constraints are defined by

Fi,j :=


D̂δ, i = j,

ĈδÂ
i−j−1
δ B̂δ, i > j,

0, i < j,

(32)

and G ∈ L(X,Y N ), with Gi,· := ĈδÂ
i−1
δ . Here, η̃ is

defined as in Thm. 2.

We refer the reader to Humaloja and Dubljevic (2018)
(Sec. III.B) for an explicit example on how to obtain the
adjoint operators that appear in Thm. 3. Given expressions
for the adjoint operators, the resulting MPC algorithm
can be implemented efficiently without explicit derivation
of the resolvent operator, which necessitates numerical
integration or series expansions in previous works (Hu-
maloja and Dubljevic, 2018; Dubljevic and Humaloja,
2020), introducing errors that are not accounted for in the
literature. Using our method, the resolvent operator can
be obtained explicitly without the need for numerical inte-
gration, while the truncation error is explicitly accounted
for by tightening the output constraints.

5. APPLICATION

In this work, we consider as an example the following
thermodynamics model on a one-dimensional compact
domain Ω ⊆ R, based on a damage-conscious tissue
thermodynamics model (El-Kebir et al., 2022b):

ẋ(t) =

[
ẋ(t)
α̇(t)
ṗ(t)

]
=

 a∇2x(t)

ϱx
∗I−x(t)

0


︸ ︷︷ ︸

f(x(t))

+

[
Tp(t)q 0
0 0
0 I

]
︸ ︷︷ ︸

g(x(t))

u(t),
(33)

where x(t) ∈ H1(Ω) denotes the temperature field, α(t) ∈
H2(Ω) denotes the damage field, p(t) ∈ R denotes the heat
source position, a > 0 refers to the thermal diffusivity,
q ∈ H1(Ω) denotes a unit heat source field, ϱ ∈ (0, 1) is a
coefficient that models the rate of damage accumulation,
and x∗ ∈ R+ is a critical damage temperature. The
functional Tp is defined by

Tp : H1(Ω) → H1(Ω), ∀p ∈ Ω,

Tpq(η) 7→ χΩ(η)q(η − p), ∀η ∈ Ω, q ∈ H1(Ω).
(34)

System (33) is of the form of (4) and belongs to the class
of regular nonlinear systems, since its linearization at any
point in the problem domain can be shown to be a regular
linear system.

The full state is given as x(t) := (x(t), α(t), p(t)) ∈
H1(Ω) × H2(Ω) × R, and the control inputs are denoted
by u(t) := (u(t), v(t)) ∈ U ⊆ R+ × R, where u(t) denotes
the nonnegative probe power and v(t) refers to the probe
velocity.

In this example we consider Ω = [0, 1], a = 0.1, ϱ = 0.9,
x∗ = 40, and q = χ[−κ,κ], with κ = 0.05. We enforce in this
problem the homogeneous Dirichlet boundary conditions
x(t, 0) = x(t, 1) = 30 for all t ≥ 0. Our objective is to
track a desired damage field αdes and probe position pdes
while ensuring that (a) the probe power is positive and
less than umax = 1250, (b) the probe speed is bounded by
vmax = 1, (c) the probe position remains in [0.4, 0.6], (d)
the temperature remains under the maximum temperature
xmax = 80, and (e) the damage does not exceed the
maximum value αmax = 1.5.

The output map is given by

C := diag((φξi)
M
i=1, (φξi)

M
i=1, 1). (35)



(a) Temperature field under
RoLiMPC control.

(b) Degree of damage field under
RoLiMPC control.

(c) Probe position and control inputs (probe
power and velocity) given by RoLiMPC.

Fig. 1. Simulation results for damage-constrained control of (33) using RoLiMPC. All constraints are honored in the
nonlinear system, in spite of linearization and discretization errors.

Since y = (yx, yα, yp) ∈ RM × RM
+ × Ω ⊂ RM × RM × R,

the output has dimension 2M + 1. In this example, we
take M = 4, and we consider a time horizon of N = 5. We
approximate the resolvent operator by a series expansion
with Nr = 2, and we take δ = 50.

We now specify the weight operators Q, R, and S for this
example. We consider Q := diag((Qx)

M
i=1, (Qα)

M
i=1, Qp) for

Qx = 15, Qα = 50, Qp = 5, R = diag(30, 5), and S = 0 to
limit the number of adjoint evaluations. We have omitted
details regarding the adjoint operators and approximation
error bounds due to space constraints.

The results are given in Figure 1. Clearly, the output
constraints are honored across the entire domain, with the
maximum temperature being 77.8 < 80 in Figure 1a and
the maximum degree of damage 1.1 < 1.5 in Figure 1b.
The control inputs satisfy the input constraints, and the
probe position stays within [0.4, 0.6] (see Figure 1c). The
error approximation bound that we have derived does
not exceed 3.1 during the considered time horizon. Note
that this approximation error bound was obtained as in
Theorem 2 without evaluating the full system solution, and
its introduction in the RoLiMPC algorithm still yields an
adequate solution.
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