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Abstract: We propose and study a notion of resilience for Markov decision processes (MDPs)
with the almost-sure reachability objective to action losses. Given an MDP with an initial state
and a set of target states, we define the resilience degree of the MDP as the minimum number
of actions that must be removed so that the target states cannot be reached almost surely
from the initial state. This notion measures the level of tolerance of an MDP to action losses
under the reachability objective. We first preprocess the MDP to remove irrelevant states and
actions and construct a reduced transition diagram. Then, we show that computing the resilience
degree is an NP-hard problem and provide an exact solution based on the mixed-integer linear
programming.
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1. INTRODUCTION

Markov decision processes (MDPs) are a widely adopted
modeling formalism for sequential decision making under
uncertainties (Puterman, 2014). They find applications
in robotic planning (Antonyshyn et al., 2022), portfolio
optimization (Bäuerle and Rieder, 2011), probabilistic
verification (Forejt et al., 2011) and so on. Reachability
analysis is a classic problem for MDPs where the goal is
to synthesize policies so as to optimize the probability of
reaching a set of targets (de Alfaro, 1999). In this work, we
propose and study a notion of resilience to action failures
for MDPs under the almost-sure reachability objective.
This notion is related to structural properties of MDPs and
quantifies the degree to which they can withstand action
losses while still achieving objectives.

Our problem formulation is motivated by the work (Bou-
vier and Ornik, 2022) and (Bucić et al., 2018). In the for-
mer, the resilient control for linear systems is considered,
and the authors synthesize control laws in the presence
of lost control over some actuators. The latter formulates
a design problem for the space of control signals so that
systems can always stay safe despite the existence of failed
actuators. Since the action failures can be interpreted as
adversarial attacks, our problem also has connections with
⋆ The work of X. Duan is sponsored by Shanghai Pujiang Program
under grant 22PJ1404900.

reachability games (Chatterjee and Henzinger, 2012) and
sabotage games (Löding and Rohde, 2003; van Benthem,
2005). In zero-sum reachability games, two players select
actions at each state (by turns or concurrently) so as to
maximize/minimize the probability that the state tran-
sitions into a set of target states. In these games, the
actions available to the players are fixed a priori. In a
sabotage game, one player tries to reach the targets by
selecting actions at each state while the other obstructs
the transitioning process by removing available actions
at states. The game is usually turn-based and played on
graphs without probabilistic transitions. In terms of model
uncertainties, robust control of MDPs under uncertain
transition models (Nilim and Ghaoui, 2005; Wiesemann
et al., 2013) or rewards (Xu and Mannor, 2009) has been
studied extensively in the literature. However, none of
these work investigates consequences of changes in the ac-
tion space. Yet another closely related line of work focuses
on network survivability problems (Coudert et al., 2007;
Kuipers, 2012; Coudert et al., 2016) where cuts with the
minimum number of (labeled) edges between source nodes
and destination nodes in a graph are computed. These
problems are usually formulated as label/color cut prob-
lems and are computationally hard (Zhang et al., 2011).
Our problem is different because breaking probabilistic
reachability does not require a cut in the transition graph.



Our objective in this paper is to propose and study a
notion of resilience for MDPs to action losses under the
almost-sure reachability objective. The main contributions
are as follows. We first propose to use the minimum
number of actions that must be disabled so that the
reachability objective cannot be achieved as the degree
of resilience for MDPs. Then, we preprocess the MDPs for
computing such a resilience degree by removing irrelevant
states and actions. We further prove that the optimization
problem is NP-hard and provide an exact solution method
based on the mixed-integer linear programming.

The rest of the paper is organized as follows. We review
the basics of MDP reachability problems and formulate
the problem of interest in Section 2. The main results are
presented in Section 3. We provide a numerical example
in Section 4. Finally, Section 5 concludes the paper.

1.1 Notation

Let R and Rn be the set of real numbers and n-dimensional
real vectors, respectively. We use N0 to denote the set of
nonnegative integers. For a finite set B, its cardinality is
denoted by |B|. The support of a probability mass function
f : X → [0, 1] is Supp(f) = {x ∈ X | f(x) > 0}.

2. PRELIMINARIES AND PROBLEM OF INTEREST

2.1 Markov decision processes and almost-sure reachability

A Markov decision process (MDP) M is a tuple M =
(S,A, P, sinit) where

(1) S is a finite set of states;
(2) A = ∪s∈SA(s) is a finite set of actions and A(s)

consists of actions available at state s;
(3) P : S × A × S → [0, 1] is the transition kernel that

satisfies
∑

s′∈S P (s′ | s, a) = 1 for s ∈ S and a ∈ A(s);
(4) sinit ∈ S is the initial state.

A policy for an MDP is a sequence of decision rules that
resolve the action selection at each state. A Markovian
policy π = (d0, d1, · · · ) for an MDP M is a sequence
of distribution functions where dt : S × A → [0, 1]
and

∑
a∈A(s) dt(a | s) = 1 for all s ∈ S and t ≥ 0. A

Markovian policy π is deterministic and stationary if all
the distribution functions in the sequence are the same and
their support consists of a single action, i.e., π = (d, d, · · · )
and d(a | s) = 1 for all s ∈ S and some a ∈ A(s).

An instance Λ = (S,A, P, sinit, T ) of the reachability
problem consists of an MDP M = (S,A, P, sinit) and a
set of target states T ⊂ S in the state space of M, and
one seeks a policy π so that the targets T can be reached
from the initial state sinit with the maximum probability.
It is well known that there always exist deterministic and
stationary optimal policies π for a reachability problem
(Baier and Katoen, 2008, Lemma 10.102). In this paper,
we focus on the almost-sure reachability objective where
the maximum probability of reaching T in Λ is 1 and adopt
the following assumption.

Assumption 1. (Almost-sure reachability). There exists a
policy for Λ = (S,A, P, sinit, T ) so that the target set T
can be reached with probability (w.p.) 1.

2.2 Problem of interest

Let Λ be a reachability problem that satisfies Assump-
tion 1. We are interested in analyzing a resilience property
of the MDP M with respect to action failures.

Definition 2. (Resilience degree to action failures). Let Λ
be a reachability problem that satisfies Assumption 1. The
MDP M is p-resilient to action failures if p is the solution
to the following optimization problem

minimize
q∈N0

q

subject to minimize
A′⊂A,|A′|=q

Prmax
Λ′ (Reach(T )) < 1,

(1)

where Prmax
Λ′ (Reach(T )) is the maximum probability of

reaching T in a modified reachability instance Λ′ = (S,A\
A′, P, sinit, T ) 1 .

In words, given a reachability instance Λ satisfying As-
sumption 1, Definition 2 asks for a minimum number
p so that when p actions are removed from the action
set, the target states can no longer be reached almost
surely. The resilience degree p is a quantitative measure
of how resilient an MDP is to action losses under almost-
sure reachability objectives. Specifically, in a p-resilient
MDP, the target states can still be reached w.p. 1 when
arbitrary p− 1 actions fail. Note that if Λ does not satisfy
Assumption 1, then it is 0-resilient immediately. In the rest
of the paper, we are interested in computing the resilience
degree of a given MDP. We illustrate Definition 2 and
reveal one nontrivial aspect of problem (1) in the following
example.

Example 3. (Coupling among actions). The transition di-
agrams of two MDPs with the same state space S =
{sinit, s2, s3, t} and action space A = {a1, a2} are shown
in Fig. 1, where the circles represent states and rectangles
represent actions. Directed edges exist between a state s
and its associated actions A(s) and between actions and
possible successor states. The numbers on the edges indi-
cate transition probabilities. In Fig. 1, although the two
MDPs have exactly the same transition structure, their
resilience degrees are different. This difference is caused
by the action coupling at different states, i.e., it is possible
that A(s) ∩A(s′) ̸= ∅ for some s, s′ ∈ S, and removing an
action in the intersection disables the action from both
states. In Fig. 1(a), the target state t is still reachable
w.p. 1 after removing either action a1 or a2. In contrast,
removing either a1 or a2 leads to 0 probability of reaching
for the MDP in Fig. 1(b).

3. MAIN RESULTS

3.1 MDP preprocessing and smaller problem instance

We first note that in problem (1), for an A′ ⊂ A with
|A′| = q and Prmax

Λ′ (Reach(T )) < 1, if A′ consists of
actions that will never be used in achieving almost-sure
reachability in Λ, then q cannot be optimal since removing
those actions from A′ makes q smaller. Therefore, we can

1 We also need to modify the transition kernel P when there is a
change in the action space A (removing all transition probabilities
associated with the removed actions). However, to simply notation
and emphasize the change of the action space, we write Λ′ as is with
the understanding that P changes accordingly.
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Fig. 1. The transition diagrams of two MDPs with different
resilience degrees.

preprocess the MDPM by removing actions that are never
used in the optimal policy for almost-sure reachability
from sinit. This preprocessing step leads to a potentially
smaller problem instance and helps with the computation
of the resilience degree.

Given a reachability instance Λ, computing the set of
states starting from which the target states can be reached
almost surely is a well-studied problem, and there exist effi-
cient algorithms for it (Baier and Katoen, 2008, Algorithm
45) (Forejt et al., 2011, Algorithm 4). Let R ⊂ S be the
set of such states, which contains the target set T . Then,
by Assumption 1, we have that sinit ∈ R. Moreover, the
set of states S \R can never be reached starting from the
initial state xinit under the optimal policy for almost-sure
reachability. Therefore, we can safely discard all the states
S \ R and their associated actions. On the other hand,
since we only care about reaching the set of targets from
sinit, those states in R that cannot be reached from sinit
and their actions can also be removed.

In terms of the actions, at each state s ∈ R, let the set of
actions Amax(s) be

Amax(s) = {a ∈ A(s) | Supp(P (· | s, a)) ⊂ R}.
Then, by the Bellman optimality criterion (Baier and
Katoen, 2008, Theorem 10.100), if an action a ∈ A(s) is
optimal at a state s ∈ R for almost-sure reachability, then
it must be that a ∈ Amax(s) (the converse is not necessarily
true), i.e., any action a ∈ A(s) \ Amax(s) will never be
selected. Let Amax = ∪s∈SA

max(s). Then, we only need to
consider the set of actionsAmax, and all actions inA\Amax

can be safely discarded without affecting the solution to
problem (1).

In summary, the preprocessing, which can be performed
efficiently, consists of the following two steps

(1) remove all states S \R, and states in R that are not
reachable from sinit and their associated actions;

(2) remove all actions in A \ Amax.

We note that after the preprocessing, the reduced MDP
only contains states whose maximum probability of reach-
ing the targets is 1. Then we can solve (1) on the reach-
ability instance with potentially smaller state and action
spaces. Without loss of generality, we assume all the MDPs
in the rest of the paper have already been preprocessed.

3.2 NP-hardness from minimum hitting set problem

In this subsection, we provide a complexity result for
problem (1). Specifically, we show that problem (1) is NP-
hard by a reduction from the minimum hitting set problem
(Garey and Johnson, 1979, SP8).

Definition 4. (Minimum hitting set problem). Given a col-
lection C of subsets of a finite set E and a positive integer
K ≤ |E|, decide whether there exists a subset E′ ⊂ E with
|E′| ≤ K such that E′ contains at least one element from
each subset in C.

It is known that the minimum hitting set problem is NP-
complete. In the next theorem, we show that our problem
can be reduced from the minimum hitting set problem.

Theorem 5. (NP-hardness of (1)). For a reachability prob-
lem Λ = (S,A, P, sinit, T ) and an integer K ≤ |A|, decid-
ing whether there exists a subset A′ ⊂ A with A′ ≤ K
such that Prmax

Λ′ (Reach(T )) < 1 is NP-complete.

Proof. The decision problem is in NP since for any given
A′, whether T can be reached w.p. 1 in Λ′ = (S,A \
A′, P, sinit, T ) can be verified in polynomial time using the
algorithm (Baier and Katoen, 2008, Algorithm 45).

To show the NP-completeness of the decision problem
of (1), we perform a reduction from the minimum hitting
set problem inspired by the one in (Jha et al., 2002).

Let C = {C1, · · · , Cm}, E = {e1, · · · , en} and an integer
K be a minimum hitting set problem where Ci ⊂ E for
1 ≤ i ≤ m. We define a reachability problem Λ as follows.
For 1 ≤ i ≤ m, we define a set of states Si for each Ci ∈ C
where Si = {si,1, · · · si,|Ci|−1}. If |Ci| = 1, then Si = ∅.
Then, the state space S of Λ is S = {sinit, t} ∪ ∪m

i=1Si

where t is the target state. There are m actions available
at sinit, i.e., Asinit = {a0,1, · · · , a0,m}. For 1 ≤ i ≤ m, an
action a0,i takes sinit to si,1 w.p. 1 if |Ci| > 1, and it takes
sinit to t w.p. 1 if |Ci| = 1. At each state si,j for 1 ≤ i ≤ m
and 1 ≤ j ≤ |Ci| − 1, there is a single action ai,j . The
action ai,j takes si,j to si,j+1 w.p. 1 if j ≤ |Ci| − 2, and
it takes si,j to t w.p. 1 if j = |Ci| − 1. Essentially, there
are m parallel paths from sinit to t in the transition graph
of Λ. It is easy to check that a minimum hitting set with
size K exists if and only if there exists a subset A′ ⊂ A
with |A′| ≤ K such that t cannot be reached from sinit
w.p. 1 in Λ′. Since the minimum hitting set problem is NP-
complete, the decision problem of (1) is also NP-complete,
which implies NP-hardness of (1).

An illustration of the reduction in the proof of Theorem 5
is shown in Fig. 2.
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Fig. 2. An illustration of the reduction from the minimum
hitting set problem to the resilience degree problem.

Remark 6. (Connections with label cut problems). In (Jha
et al., 2002), NP-hardness of now known as the label cut
problem (Zhang et al., 2011) is proved by a reduction from
the minimum hitting set problem. In a label cut problem,
one is given a graph with a source, a destination, and
labeled edges, and the goal is to find a cut for the graph



that separates the source from the destination and uses
the minimum number of labels (cf. classic minimum cut
problem). Our problem is different from label cut problems
since we consider probabilistic reachability. For example,
in Fig. 3, to disconnect all paths from sinit to t, one has to
cut both actions a1 and a2. However, removing any one of
these actions results in reachability probability less than 1
from sinit. In fact, one can see that a solution to the label
cut serves as an upper bound for the resilience degree.
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Fig. 3. The transition diagram of an MDP where the label
cut number is different from the resilience degree.

3.3 An exact solution based on MILP

In this subsection, we first provide an exact solution
to (1) by solving multiple mixed-integer linear programs
(MILPs). Then, we develop an algorithm to find the
resilience degree of a given MDP.

Consider the following MILP:

minimize
xs∈R

xsinit
(2a)

subject to

xs ≥
∑
s′∈S

P (s′ | s, a)xs′ − ya, for all s ∈ S \ T , a ∈ A(s),

(2b)

xs = 1, for all s ∈ T , (2c)

xs ≥ 0, for all s ∈ S \ T , (2d)

ya ∈ {0, 1}, for all a ∈ A, (2e)∑
a∈A

ya ≤ K, (2f)

where K ∈ N0 is a positive parameter that represents the
maximum number of actions that can be removed. There
are a total of |S| continuous variables and |A| binary vari-
ables in (2). The variables ya for a ∈ A indicate whether
the corresponding actions are removed from the action
set. The constraint (2b) is a modified Bellman optimality
condition. When ya = 1, the action a is removed from the
available set of actions, and this constraint is inactive since∑

s′∈S P (s′ | s, a)xs′ ≤ 1 and xs ≥ 0. Constraints (2c) and
(2d) are standard constraints in the LP formulation for
computing the maximum reachability probabilities (Cour-
coubetis and Yannakakis, 1998, Proposition 3.2). Note that
when K = 0, we indeed recover the standard LP. In the
next theorem, we show that solving (2) is equivalent to
solving the decision problem for (1).

Theorem 7. (Equivalent MILP formulation for (1)). For a
reachability problem Λ = (S,A, P, sinit, T ) that satisfies
Assumption 1, there exists a subset A′ ⊂ A with |A′| ≤ K
such that Prmax

Λ′ (Reach(T )) < 1 if and only if the solution
to (2) satisfies xsinit < 1 with parameter K.

Proof. Suppose there exists a subset A′ ⊂ A with |A′| ≤
K such that Prmax

Λ′ (Reach(T )) < 1. We let ya = 1 for
a ∈ A′ and ya = 0 otherwise. Under this specific setup,
(2) is essentially computing the maximum reachability
probabilities for a modified instance (S,A\A′, P, sinit, T ).
To see this, for ya = 1 (action a is removed), the
constraint (2b) becomes redundant due to the existence
of the constraint xs ≥ 0 and the fact that∑

s′∈S

P (s′ | s, a)xs′ − ya ≤
∑
s′∈S

P (s′ | s, a)− ya = 0,

where we used that xs ≤ 1. Since Prmax
Λ′ (Reach(T )) < 1,

the solution to (2) satisfies xsinit < 1 when we fix ya = 1
for a ∈ A′. Thus, the optimal solution to (2) must also
satisfy xsinit < 1.

For the other direction, suppose for some parameter K,
the solution to (2) satisfies xsinit < 1. We construct A′ =
{a ∈ A | ya = 1}. By the argument above, we know that (2)
is computing the maximum reachability probabilities for
(S,A \ A′, P, sinit, T ). Thus, we have Prmax

Λ′ (Reach(T )) <
1.

By Theorem 7, if we solve (2) multiple times with an
increasing sequence of K’s and stop whenever the solution
to (2) satisfies xsinit < 1, then we obtain the optimal
solution to (1), i.e., the resilience degree has been found. To
figure out the number of times (2) needs to be solved, we
notice that both the number of actions |A(sinit)| available
at sinit and |{a ∈ A(s) | s ∈ S,

∑
t∈T P (t | s, a) > 0}| are

obvious upper bounds on K. That is because removing
either set of these actions eliminates all paths from sinit to
T in the transition diagram. We let

K̄ = min{|A(sinit)|,
|{a ∈ A(s) | s ∈ S,

∑
t∈T

P (t | s, a) > 0}|}.

The following lemma suggests a structural property of the
MDP after removing a set of actions.

Lemma 8. (Structural property). For a preprocessed reach-
ability problem Λ = (S,A, P, sinit, T ) that satisfies As-
sumption 1, if for some A′ ⊂ A, there holds that
Prmax

Λ′ (Reach(T )) < 1, then there exists at least one sink
end component other than T in Λ′.

Proof. We postpone the proof and the introduction of
relevant concepts to Appendix A.

By Lemma 8, we know that to produce an optimal A′,
we need to create at least one sink end component (EC).
These could be single states or an EC as a whole that do
not have actions that lead to transitions to other states.
This is in contrast with the discussion in Section 3.1
regarding the preprocessed MDPs in which every state
can reach T with probability 1. The detailed procedure for
computing the resilience degree of an MDP is summarized
in Algorithm 1.

4. NUMERICAL EXAMPLE

In this section, we showcase the performance of Algo-
rithm 1 on a numerical example where a mobile agent
navigates from the starting point to the destination in
a grid world while avoiding obstacles. The grid world



Algorithm 1: Computing resilience degree of an MDP

Input: A preprocessed reachability instance Λ
Output: The resilience degree of Λ
for K = 1 : K̄ do

Solve (2) with parameter K and obtain x ∈ R|S|

if xsinit
< 1 then

return K
end

end

Fig. 4. A navigation environment where the blue cell, green
cell and red cells are the starting point, destination
and obstacles, respectively.

environment is shown in Fig. 4. The blue and green cells
are the starting point and the destination, respectively.
The 8 red cells representing obstacles are randomly placed
in the environment.

Suppose a mobile agent navigates from the starting point
to the destination in the environment, and if it enters the
red regions (hitting the obstacles), then it cannot escape
and stays there forever. At each state (grid cell), there
are a total of 8 actions available to the agent, i.e., {north
(N), northeast (NE), east (E), southeast (SE), south (S),
southwest (SW), west (W), northwest (NW)}. Except at
the boundaries, by taking each action, the agent has a high
probability of going in the direction and small probabilities
of slipping to the neighboring positions. For example, when
heading north, the agent has a 0.9 probability of landing
on the cell directly to the north of the current position,
and it has a 0.05 probability of landing on the cells to the
northeast and northwest directions each. On the boundary,
the agent stays at the current location with the probability
that an action takes it outside of the environment.

We study the resilience of the agent navigation problem
to action failures described above. We first randomly
generate two environments as shown in Fig. 5 and 6,
respectively, where the obstacles are randomly placed.
The resilience degree p, computed via Algorithm 1, are
4 and 2, respectively. We then randomly remove p − 1
actions for the agent and show the sample paths generated
by the optimal reaching policy. Notably, in the second
environment (Fig. 6), since there is an obstacle right above
the starting point, the actions N, NE, and NW that result
in a positive probability of landing on the obstacle must
not be used. On the other hand, since the agent is on
the boundary, it stays at the current location when taking
actions W and SW. Therefore, only the actions E and

(a) E, S, NW fail (b) E, S, NW fail

(c) SE, SW, W fail (d) SE, S, W fail

Fig. 5. The first environment with resilience degree 4.

(a) E fails (b) SW fails

(c) SW fails (d) E fails

Fig. 6. The second environment with resilience degree 2.

SE can be part of the optimal policy (both of these two
actions have strictly positive probabilities of heading east).
It turns out that the agent can make it to the goal when
one of the two actions fails, but certainly not when both
of them do.

5. CONCLUSION

We proposed and studied a notion of resilience to action
failures for MDPs under almost-sure reachability objec-
tives. The number of actions that must be disabled so
that almost-sure reachability property no longer holds
is adopted as a quantitative measure for the resilience
degree. We started with a preprocessing step that removes



irrelevant states and actions for the computation of the
resilience degree, which reduces the size of the problem.
We then showed that the computation problem is NP-
hard, and we proposed an exact solution method based on
the mixed-integer linear programming. A natural general-
ization of the current work is to consider other objective
functions and develop a more unified analysis and compu-
tation framework.

Appendix A. PROOF OF LEMMA 8

We first give the definition for the end components (ECs)
of an MDP (Baier and Katoen, 2008, Section 10.6.3).

Definition 9. (EC). An end component EC of an MDP
M = (S,A, P, sinit) is a tuple EC = (X ,U) where
(i) the set of states ∅ ≠ X ⊂ S;
(ii) the set of actions U = ∪s∈SU(s) with U(s) ⊂ A(s)

for all s ∈ X ;
(iii) for all s ∈ X and u ∈ U(s), Supp(P (· | s, u)) ⊂ X ;
(iv) for every pair of states s, s′ ∈ X and s ̸= s′, there

exists a sequence of states and actions (s0, u0 · · · , st)
with t ≥ 1 such that s0 = s, st = s′, and for all
0 ≤ τ ≤ t− 1, uτ ∈ U(sτ ) and P (sτ+1 | sτ , uτ ) > 0.

Intuitively, an EC is a part of the MDP that is closed in
the sense the once the state enters the EC, it can stay
there afterwards. A sink EC = (X ,U) is an EC such that
for all s ∈ X , we have U(s) = A(s).

Proof. Since Prmax
Λ′ (Reach(T )) < 1, then by (Forejt et al.,

2011, Algorithm 4), we know that there must exist at
least one state s ∈ S that does not have a path to T
in the transition diagram (otherwise, all states will have
the maximum probability 1 of reaching T ). Therefore, the
maximum probability of reaching T from s is 0. By the
Bellman optimality criterion, for all actions a ∈ A(s), the
set of states in Supp(P (· | s, a) must also have 0 probability
of reaching T . The same argument applies to the states in
Supp(P (· | s, a). By including all these states and actions,
we have found a sink EC.
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Löding, C. and Rohde, P. (2003). Solving the sabotage
game is PSPACE-hard. In Mathematical Foundations
of Computer Science, 531–540. Berlin, Germany.

Nilim, A. and Ghaoui, L.E. (2005). Robust control
of Markov decision processes with uncertain transi-
tion matrices. Operations Research, 53(5), 780–798.
doi:10.1287/opre.1050.0216.

Puterman, M.L. (2014). Markov decision processes: Dis-
crete stochastic dynamic programming. John Wiley &
Sons.

van Benthem, J. (2005). An essay on sabotage and
obstruction. In D. Hutter and W. Stephan (eds.),
Mechanizing Mathematical Reasoning, volume 2605 of
Lecture Notes in Computer Science, 268–276. Springer.
doi:10.1007/978-3-540-32254-2 16.

Wiesemann, W., Kuhn, D., and Rustem, B. (2013). Robust
Markov decision processes. Mathematics of Operations
Research, 38(1), 153–183. doi:10.1287/moor.1120.0566.

Xu, H. and Mannor, S. (2009). Parametric regret in un-
certain Markov decision processes. In IEEE Conference
on Decision and Control & Chinese Control Conference,
3606–3613. Shanghai, China.

Zhang, P., Cai, Y., Tang, L., and Zhao, W. (2011). Ap-
proximation and hardness results for label cut and re-
lated problems. Journal of Combinatorial Optimization,
21(2), 192–208. doi:10.1007/s10878-009-9222-0.

https://doi.org/10.1145/3564696
https://doi.org/10.1109/TAC.2022.3163242
https://doi.org/10.1016/j.jcss.2011.05.002
https://doi.org/10.1142/S0129626407002958
https://doi.org/10.46298/dmtcs.1297
https://doi.org/10.1109/9.720497
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.5402/2012/932456
https://doi.org/10.1287/opre.1050.0216
https://doi.org/10.1007/978-3-540-32254-2_16
https://doi.org/10.1287/moor.1120.0566
https://doi.org/10.1007/s10878-009-9222-0

	Introduction
	Notation

	Preliminaries and problem of interest
	Markov decision processes and almost-sure reachability
	Problem of interest

	Main results
	MDP preprocessing and smaller problem instance
	NP-hardness from minimum hitting set problem
	An exact solution based on MILP

	Numerical example
	Conclusion
	Proof of Lemma 8

