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Abstract— When failure is not an option, systems are
designed to be resistant to various malfunctions, like a
loss of control authority over actuators. This malfunction
consists in some actuators producing uncontrolled and
thus possibly undesirable inputs with their full actuation
range. After such a malfunction, a system is deemed re-
silient if its target is still reachable despite these unde-
sirable inputs. However, the malfunctioning system might
be significantly slower to reach its target compared to its
initial capabilities. To quantify this loss of performance
we introduce the notion of quantitative resilience as the
maximal ratio over all targets of the minimal reach times for
the initial and malfunctioning systems. Since quantitative
resilience is then defined as four nested nonlinear opti-
mization problems, we establish an efficient computation
method for control systems with multiple integrators and
nonsymmetric input sets. Relying on control theory and on
two specific geometric results we reduce the computation
of quantitative resilience to a linear optimization problem.
We illustrate our method on an octocopter.

Index Terms— fault-tolerant, linear systems, optimiza-
tion, quantitative resilience, reachability, time-invariant.

I. INTRODUCTION

RESISTANCE to malfunctions is usually acquired through
actuator redundancy and fault-tolerant controllers [1]

using adaptive control [2] or active disturbance rejection [3].
Fault-tolerant theory typically considers either actuators lock-
ing in place [2], actuators losing effectiveness but remaining
controllable [1], or a combination of both [3]. However, after
damage [4] or hostile takeover, some actuators may produce
undesirable inputs with their full actuation range over which
the controller has readings but no control. Such a malfunction
happened to the Nauka module as it docked to the International
Space Station [4] and has been previously discussed in [5]
under the name of loss of control authority over actuators.
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In contrast to the robust control framework where the
undesirable inputs may not be observable and have a small
magnitude compared to the actuators’ inputs [6], in the setting
of loss of control authority, undesirable inputs are observable
and can have a magnitude similar to the controlled inputs.
As demonstrated in [7], a robust controller generally cannot
handle a loss of control authority over actuators.

After a partial loss of control authority over actuators, a
target is resiliently reachable if for any undesirable inputs of
the malfunctioning actuators there exists a control driving the
state to the target [5]. However, the malfunctioning system
might need considerably more time to reach its target com-
pared to the initial system. To measure the delays caused
by the loss of control authority, we rely on the notion of
quantitative resilience introduced in [8]. Similar concepts have
been previously developed for nuclear power plants [9], but
were limited to their specific applications.

We formulate quantitative resilience as the maximal ratio
over all targets of the minimal reach times for the initial and
malfunctioning systems. This formulation leads to a nonlinear
minimax optimization problem with an infinite number of
constraints. Our main contribution is to reduce the quantitative
resilience of systems with multiple integrators to a linear
optimization problem. To do so we combine two optimization
results designed specifically for this application [10] with the
theorems of [11], [12] stating the existence of time-optimal
controls. However, these controls are bang-bang [13], [14] and
hence cannot be exactly implemented by physical actuators. As
a first step towards a more high-fidelity application, we then
incorporate propellers’ dynamics to our octocopter model and
quantify its resilience.

The contributions of this paper are threefold. First, we pro-
pose an efficient method to compute the quantitative resilience
of linear systems with multiple integrators and nonsymmetric
inputs by simplifying a nonlinear problem of four nested op-
timizations into a single linear optimization problem. Second,
we establish necessary and sufficient conditions to verify if
a system is resilient to the loss of control over one of its
actuators. Finally, we provide all the proofs omitted from [8].

The remainder of the paper is organized as follows. Sec-
tion II introduces preliminary notions on resilience. We calcu-
late the optimal reach times for the initial and malfunctioning
systems in Section III. The pinnacle of this work is the efficient
method to compute quantitative resilience in Section IV for
the loss of control over a single actuator. This metric also
allows to assess whether a system is resilient, as detailed in
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Section V. We study the quantitative resilience of systems with
multiple integrators in Section VI before applying our theory
to an octocopter losing control over one of its propellers in
Section VII.

A preliminary version of this work was presented in [8],
where simpler dynamics were used. We now extend our theory
to linear systems with multiple integrators and general input
sets. Sections VI and VII are entirely novel, and we provide
all the proofs omitted from [8].

Notation: For a set X we denote its boundary ∂X , its
interior int(X ) := X\∂X . The set of time functions taking
value in X is denoted F(X ) :=

{
f : f(t) ∈ X for all t ≥ 0

}
.

The set of integers between a and b included is [[a, b]]. The
factorial of k ∈ N is denoted k!. Let R+ := [0,∞) and we
use the subscript ∗ to exclude zero, for instance R+

∗ := (0,∞).
The Euclidean norm is ‖ · ‖ and the unit sphere is S := {x ∈
Rn : ‖x‖ = 1}. For k ∈ N, the kth derivative of function f is
denoted as f (k).

II. PRELIMINARIES AND PROBLEM STATEMENT

The control of a physical system usually involves steering
its position with inputs only affecting its acceleration [15].
With these systems in mind, we focus on generalized kth order
integrators in Rn, i.e.,

x(k)(t) = B̄ū(t), ū(t) ∈ Ū , x(0) = x0, x
(l)(0) = 0, (1)

for all l ∈ [[1, k − 1]] and k ∈ N. Matrix B̄ ∈ Rn×(m+p)

is constant. The control set is the hyperrectangle Ū :=∏m+p
i=1

[
ūmini , ūmaxi

]
⊆ Rm+p, with ū ∈ F(Ū).

After a malfunction, the system loses control authority over
p of its m+p actuators. We then split B̄ into B and C, Ū into U
andW , and ū into the remaining control inputs u ∈ F(U) and
the undesirable inputs w ∈ F(W). Then, the initial conditions
are the same as in (1) but the dynamics become

x(k)(t) = Bu(t) + Cw(t), u(t) ∈ U , w(t) ∈ W, (2)

U :=

m∏
i=1

[
umini , umaxi

]
, W :=

p∏
i=1

[
wmini , wmaxi

]
.

We now recall the definition of resilience from [7].
Definition 1: System (1) is resilient to the loss of p of its

actuators corresponding to the matrix C as above if for all
undesirable inputs w ∈ F(W) and all target xgoal ∈ Rn there
exists a control uw ∈ F(U) and a time T such that the state of
the system (2) reaches the target at time T , i.e., x(T ) = xgoal.

While a resilient system is by definition capable of reaching
any target after a partial loss of control authority, the malfunc-
tioning system might be considerably slower than the initial
system to reach the same target. We introduce the following
two reach times for the target xgoal ∈ Rn and the target
distance d := xgoal − x0 ∈ Rn.

Definition 2: The nominal reach time of order k T ∗k,N , is
the shortest time required for the state x of (1) to reach the
target xgoal under admissible control ū ∈ F(Ū):

T ∗k,N (d) := inf
ū∈F(Ū)

{
T ≥ 0 : x(T )− x0 = d

}
. (3)

Definition 3: The malfunctioning reach time of order k
T ∗k,M , is the shortest time required for the state x of (2) to

reach the target xgoal under admissible control u ∈ F(U)
when the undesirable input w ∈ F(W) is chosen to make that
time the longest:

T ∗k,M (d) := sup
w∈F(W)

{
inf

u∈F(U)

{
T ≥ 0 : x(T )− x0 = d

}}
.

(4)
The causality issue arising from (4) is discussed at the end

of the section. By definition, if the system is controllable, then
T ∗k,N (d) is finite for all d ∈ Rn, and if it is resilient, then
T ∗k,M (d) is also finite. The malfunctioning system (2) can take

up to
T∗
k,M (d)

T∗
k,N (d) times longer than the initial system (1) to reach

the target d+ x0.
Definition 4: The quantitative resilience of order k of sys-

tem (2) is

rk,q := inf
d∈Rn

∗

T ∗k,N (d)

T ∗k,M (d)
. (5)

For a resilient system, rk,q ∈ (0, 1]. The closer rk,q is
to 1, the smaller is the loss of performance caused by the
malfunction.

Problem 1: How to calculate efficiently rk,q?
Indeed, a naive computation of rk,q requires solving four

nested optimization problems whose constraint sets are Rn∗
and three infinite-dimensional function spaces. A brute force
approach to this problem is doomed to fail.

We will explore thoroughly the simple case k = 1 in the
following sections and generalize their results to k ∈ N in
Section VI. For k = 1, systems (1) and (2) simplify into

ẋ(t) = B̄ū(t), ū(t) ∈ Ū , x(0) = x0 ∈ Rn, (6)
ẋ(t) = Bu(t) + Cw(t), u(t) ∈ U , w(t) ∈ W. (7)

For brevity, in the case k = 1 we lose the subscript 1 and
write the nominal reach time T ∗N = T ∗1,N as

T ∗N (d) := inf
ū∈F(Ū)

{
T ≥ 0 :

∫ T

0

B̄ū(t) dt = d
}
, (8)

with d = xgoal − x0. Similarly, we write the malfunctioning
reach time T ∗M = T ∗1,M as

T ∗M (d) := sup
w∈F(W)

{
inf

u∈F(U)

{
T ≥ 0 :

∫ T

0

[
Bu(t)+Cw(t)

]
dt = d

}}
.

(9)
The quantitative resilience rq of a system following (7) is then

rq := inf
d∈Rn

∗

T ∗N (d)

T ∗M (d)
= r1,q. (10)

We now discuss the information setting in the malfunc-
tioning system. The resilience framework of [5], [7] assumes
that u has only access to the past and current values of w,
but not to their future. Then, the optimal control u∗ in (9)
cannot anticipate a truly random undesirable input w. Hence,
this strategy is not likely to result in the global time-optimal
trajectory of Definition 3.

In fact, there would be no single obvious choice for
u∗
(
t, w(t)

)
, rendering T ∗M ill-defined and certainly not time-

optimal, whereas T ∗N is time-optimal. In this case, our concept
of quantitative resilience becomes meaningless. The work [16]
states that to calculate u∗ without future knowledge of w∗
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the only technique is to solve the intractable Isaac’s equation.
Thus, the paper [16] derives only suboptimal solutions and
concludes that its practical contribution is minimal.

Instead, we follow [17] where the inputs u∗ and w∗ are both
chosen to make the transfer from x0 to xgoal time-optimal in
the sense of Definition 3. The controller knows that w∗ will
be chosen to make T ∗M the longest. Thus, u∗ is chosen to react
optimally to this worst undesirable input. Then, w∗ is chosen,
and to make T ∗M the longest, it is the same as the controller
had predicted. Hence, from an outside perspective it looks as
if the controller knew w∗ in advance, as reflected by (4).

We will prove in the following sections that with this
information setting w∗ is constant. Then, the controller can
more easily and more reasonably predict what is the worst
w∗ and build the adequate u∗. With these two input signals,
T ∗M is time-optimal in the sense of Definition 3 and can be
meaningfully compared with T ∗N to define the quantitative
resilience of control systems.

III. OPTIMAL REACH TIMES

We start with the dynamical system (6) to calculate the
nominal reach time T ∗N of (8). We easily show in Lemma 1
of Appendix I, that if system (6) is controllable, the optimal
control ū∗ of (8) exists and is constant:

T ∗N (d) = min
ū∈ Ū

{
T ≥ 0 : B̄ū T = d

}
. (11)

Since the input set Ū is bounded, the controllability of system
(6) is equivalent to rank(B̄) = n and 0 ∈ int(Ū) [18]. The
multiplication of variables ū and T makes (11) a bilinear op-
timization problem. For easier computation, we solve instead
the linear optimization T ∗N (d) = 1/max

ū∈ Ū

{
λ : B̄ū = λd

}
.

We now study the malfunctioning system (7) to compute
the malfunctioning reach time T ∗M of (9). As above, we easily
prove in Lemma 2 of Appendix I that if system (7) is resilient,
the optimal control u∗(w) of (9) exists and is constant for any
undesirable input w ∈ F(W):

T ∗M (d)= sup
w∈F(W)

{
min

u∗(w)∈U

{
T : Bu∗(w)T+

∫ T

0

Cw(t) dt = d

}}
.

(12)
Tackling the supremum in (12) requires a different approach.

Proposition 1: If system (7) is resilient, then for all d ∈ Rn∗
the supremum T ∗M (d) of (9) is a maximum achieved by a
constant undesirable input w∗ ∈ W .

Proof: For w ∈ F(W), let wc :=
∫ TM (w,d)

0
w(t)

TM (w,d) dt

with TM defined in (24). Then, for i ∈ [[1, p]] we have
wmini ≤wi(t)≤wmaxi . Integrating yields wmini ≤wci ≤wmaxi ,
so wc ∈ W . Then,

∫ TM (w,d)

0
Cw(t)dt = CwcTM (w, d) =

d−Bu∗(w)TM (w, d).
Conversely, note that for all wc ∈ W and T > 0, we can

define w(t) := 1
T w

c for t ∈ [0, T ] such that
∫ T

0
Cw(t) dt =

Cwc and w ∈ F(W). Thus, the constraint space of the
supremum of (9) can be restricted to constant inputs in W .

We define the function ϕ(w) := Bu∗(w)+Cw for w ∈ W .
When applying the constant inputs w and u∗(w), dynamics (7)
become ẋ = ϕ(w). Because

(
Bu∗(w) + Cw

)
TM (w, d) = d,

we have ϕ(w) = 1
TM (w,d)d and ϕ is continuous in w according

to Lemma 3 in Appendix I. Set W is compact and x0 ∈ Rn
is fixed. Then, Theorem 1 of [12] states that AW :=

{
(x1, T ):∫ T

0
ϕ(w)dt = x1 − x0, for w ∈ W

}
is compact. Note that

T ∗M (d) = sup
{
T : (xgoal, T ) ∈ AW

}
is the supremum of

a continuous function over the compact set AW , so T ∗M (d) is
a maximum achieved on W .

Then, the malfunctioning reach time becomes

T ∗M (d) = max
w∈W

{
min
u∈U

{
T ≥ 0 :

(
Bu+ Cw

)
T = d

}}
. (13)

We will show that the maximum of (13) is achieved by an
extreme undesirable input, i.e., at the set of vertices of W ,
denoted by V . However, we cannot directly apply the bang-
bang principle, as it has been mostly derived for systems with
a linear dependency on the input [11], [13], [14], while ϕ
introduced in Proposition 1 is not linear in w. The works [12],
[19], [20] consider a nonlinear ϕ, but they require conditions
that are not satisfied in our case. Thus, we need a new
optimization result, namely Theorem 2.1 from [10], which
applies to polytopes.

Definition 5: A polytope in Rn is a compact intersection of
finitely many half-spaces.

We define X :=
{
Cw : w ∈ W

}
and Y :=

{
Bu : u ∈ U

}
.

Since U and W are polytopes, so are X and Y [21].
Proposition 2: If system (7) is resilient, then dimY = n

and −X ⊆ int(Y).
Proof: Following Proposition 1 we know that for all

x ∈ X and all d0 ∈ Rn there exist y ∈ Y and T ≥ 0 such
that (x+ y)T = d0. Since d0 can be freely chosen in Rn, we
must have dimY = n.

Take d0 = x ∈ X , x 6= 0. Then, there exists y1 ∈ Y and
T1 > 0 such that (x + y1)T1 = x. Hence, λ1x ∈ Y with
λ1 := −1 + 1/T1. Now take d0 = −x. Then, there exists
y2 ∈ Y and T2 > 0 such that (x + y2)T2 = −x. Hence,
λ2x ∈ Y with λ2 := −1− 1/T2. Since λ2 ≤ −1 ≤ λ1 and Y
is convex, we have −x ∈ Y .

If x = 0, this process fails because we would get T = 0
when taking d = 0. Instead, take d0 ∈ S. Then there exist
T > 0 and y ∈ Y such that yT = d0. Repeating the same for
−d0 and using the convexity of Y as in the previous paragraph,
we obtain 0 ∈ Y . Thus −X ⊆ Y .

Assume that there exists −x1 ∈ −X ∩ ∂Y . For d = −x1,
TM (x1,−x1) = min

y∈Y

{
T ≥ 0 : (x1 + y)T = −x1

}
, with TM

introduced in (24). Since T ≥ 0, the optimal y (called y∗)
must make x1 + y positively collinear with −x1. Thus, y∗ is
positively collinear with −x1 and the largest it can be is y∗ =
−x1 because −x1 ∈ ∂Y . Then, the constraint in TM (x1,−x1)
is 0T = −x1. The lack of solution contradicts the resilience
of the system. Thus, −X ∩ ∂Y = ∅, i.e., −X ⊆ int(Y).

We now prove that the maximum of (13) is achieved on V .
Proposition 3: If system (7) is resilient, then for all d ∈

Rn∗ , the maximum of (13) is achieved with a constant input
w∗ ∈ V .

Proof: Replacing 1
T by λ in (13) leads to T ∗M (d) =

1/min
x∈X

{
max
y∈Y

{
λ > 0 : x + y = λd

}}
. Since λ ≥ 0, we write
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λ = |λ| = ‖λd‖/‖d‖ = ‖x+ y‖/‖d‖. Then,

T ∗M (d) =
‖d‖

min
x∈X

{
max
y∈Y

{
‖x+ y‖ : x+ y ∈ R+d

}} . (14)

Following Proposition 2, we can apply Theorem 2.1 of [10]
and conclude that the argument of the minimum in (14) is at
a vertex x∗ of X . Since the transformation between W and X
is linear, x∗ = Cv with v ∈ V a vertex of W [21]. Therefore,
the maximum of (13) is achieved on V .

We have then reduced the outer constraint set of (9) from
an infinite-dimensional function set F(W) to a finite set V of
cardinality 2p with p the number of malfunctioning actuators.
Then,

T ∗M (d) = max
w∈V

{
min
u∈U

{
T ≥ 0 :

(
Bu+ Cw

)
T = d

}}
. (15)

Because u is chosen to counteract w and make Bu + Cw
collinear with d ∈ Rn, while w is chosen freely in W , the
minimum of (15) cannot be restricted to the vertices of U . We
will now prove that both reach times are linear in the target
distance.

Proposition 4: For any d ∈ Rn and λ ≥ 0 we have
T ∗N (λd) = λ T ∗N (d) and T ∗M (λd) = λ T ∗M (d).

Proof: The case λ = 0 is trivial since T ∗N (0) = T ∗M (0) =
0, so consider λ > 0. The nominal reach time for d is T ∗N (d),
so there exists ūd ∈ Ū such that B̄ūdT ∗N (d) = d. Then,
B̄ ūd λT

∗
N (d) = λd. The optimality of T ∗N (λd) to reach λd

leads to T ∗N (λd) ≤ λT ∗N (d).
Similarly, there exists ūλd ∈ Ū such that B̄ūλdT ∗N (λd) =

λd, so B̄ ūλd
T∗
N (λd)
λ = d. The optimality of T ∗N (d) to reach

d yields T ∗N (d) ≤ T∗
N (λd)
λ . Thus, λT ∗N (d) ≤ T ∗N (λd).

A similar proof does not work for T ∗M because of the
minimax structure of (15).

For d ∈ Rn∗ and w ∈ W , we define x = Cw and y∗(x, d) :=
arg min

y∈Y

{
T ≥ 0 : (y+x)T = d

}
. Note that Bu∗(w) +Cw =

y∗(x, d) + x, with u∗ defined in Lemma 2. Then, with TM
introduced in (24), we have

(
Bu∗(w) + Cw

)
TM (w, d) = d,

i.e., y∗(x, d) = 1
TM (w,d)d− x. For λ > 0, we define α(λ) :=

λ
TM (w,λd) −

1
TM (w,d) , such that y∗(x, λd)− y∗(x, d) = α(λ)d.

The polytope Y in Rn has a finite number of faces, so we
can choose d ∈ Rn∗ not collinear with any face of Y . Since Y
is convex, the ray

{
y∗(x, d)+αd : α ∈ R

}
intersects with ∂Y

at most twice. Since y∗(x, d) ∈ ∂Y , one intersection happens
at α = 0. If there exists another intersection, it occurs for some
α0 6= 0. Since y∗(x, λd) ∈ ∂Y , we have y∗(x, d) + α(λ)d ∈
∂Y . Then, α(λ) ∈ {0, α0} for all λ > 0.

According to Lemma 3, TM is continuous in d, so α is
continuous in λ but its codomain is finite. Therefore, α is
constant and we know that α(1) = 0. So α is null for all
λ > 0, leading to TM (w, λd) = λTM (w, d) for all λ > 0 and
d not collinear with any face of ∂Y . Since the dimension of
each face of ∂Y is at most n−1 in Rn and TM is continuous
in d, the homogeneity of TM holds on the whole of Rn. Note
that T ∗M (d) = max

w∈W
TM (w, d). Thus, λT ∗M (d) = T ∗M (λd).

Combining the results obtained for the nominal and the mal-
functioning dynamics, we can now evaluate the quantitative
resilience of the system.

IV. QUANTITATIVE RESILIENCE

Focusing on the loss of control over a single actuator we
will simplify tremendously the computation of rq by noting
that the effects of the undesirable inputs are the strongest along
the direction described by the malfunctioning actuator.

Theorem 1: If system (7) is resilient and C is a single
column matrix, the ratio of reach times is maximizing along
C, i.e., max

d∈Rn
∗

T∗
M (d)
T∗
N (d) = max

{
T∗
M (C)
T∗
N (C) ,

T∗
M (−C)
T∗
N (−C)

}
.

Proof: Using Proposition 4 we reduce the constraint set
of (10) from Rn∗ to S. We use the same process that yielded
(14) but we start from (11) where we split B̄ into B and C:

1

T ∗N (d)
= max
ū∈ Ū

{
λ : B̄ū = λd

}
= max
u∈U, w∈W

{
λ : Bu+ Cw = λd

}
= max
x∈X , y ∈Y

{
‖y + x‖ : y + x ∈ R+d

}
. (16)

We can now gather (14) with d ∈ S and (16) into

T ∗M (d)

T ∗N (d)
=

max
x∈X , y ∈Y

{
‖x+ y‖ : x+ y ∈ R+d

}
min
x∈X

{
max
y∈Y

{
‖x+ y‖ : x+ y ∈ R+d

}} .
Because C is a single column, dimX = 1. Then, following
Proposition 2 we conclude with the Maximax Minimax Quo-
tient Theorem of [10].

Theorem 1 is the strongest result of this work as it solves
the nonlinear fractional optimization of rq over d ∈ S. Its
proof is brief because all the heavy lifting is done in [10].

Since the sets U and W are not symmetric, in general
T∗
M (C)
T∗
N (C) 6=

T∗
M (−C)
T∗
N (−C) . Thus, to calculate the quantitative re-

silience rq we need to evaluate T ∗N (±C) and T ∗M (±C), i.e.,
solve four optimization problems. The computation load can
be halved with the following result.

Theorem 2: If system (7) is resilient and C is a single
nonzero column, then rq = min

{
r+
C , r

−
C

}
, with

r+
C :=

wmin + λ+

wmax + λ+
, r−C :=

wmax − λ−

wmin − λ−
, (17)

and λ± := max
υ ∈U

{
λ : Bυ = ±λC

}
.

Proof: Let ū ∈ Ū , u ∈ U and w ∈ W be the arguments
of the optimization problems (11) and (15) for d = C 6= 0.
We write ū = (uB , uC) ∈ U ×W . Then,

B̄ū T ∗N (C) = BuB T
∗
N (C) + CuC T

∗
N (C) = C,

BuT ∗M (C) + CwT ∗M (C) = C.
(18)

We consider the loss of a single actuator, thus W =
[wmin, wmax] ⊆ R which makes CwT ∗M (C) and CuCT ∗N (C)
collinear with C. From Proposition 3, we know that w ∈ ∂W .
Since w maximizes T ∗M (C) in (18), we obviously have w =
wmin. On the contrary, uC is chosen to minimize T ∗N (C) in
(18), so uC = wmax.

According to (18), BuB and Bu are collinear with C, and
they are chosen to minimize respectively T ∗N (C) and T ∗M (C).
Thus, u and uB are the vectors in U that maximize the norm
of Bu and BuB and make them positively collinear with C,
i.e., u = uB = arg min

υ ∈U

{
τ : Bυτ = C

}
. Using λ = 1

τ we
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render this problem linear:

λ+ = max
υ ∈U

{
λ : Bυ = λC

}
u = uB = arg max

υ ∈U

{
λ : Bυ = λC

}
.

By combining all the results, (18) simplifies into:

C(λ+ + wmax)T ∗N (C) = C,
C(λ+ + wmin)T ∗M (C) = C.

Since C is a nonzero column, T∗
N (C)
T∗
M (C) = λ++wmin

λ++wmax = r+
C .

Following the same reasoning for d = −C, we obtain

C(−λ− + wmin)T ∗N (C) = −C
C(−λ− + wmax

)
T ∗M (C) = −C,

with λ− = max
υ ∈U

{
λ : Bυ = −λC

}
. Then, T∗

N (−C)
T∗
M (−C) =

wmax−λ−

wmin−λ− = r−C . Following Theorem 1,

rq = min

{
T ∗N (C)

T ∗M (C)
,
T ∗N (−C)

T ∗M (−C)

}
= min

{
r+
C , r

−
C

}
.

We introduced quantitative resilience as the solution of four
nonlinear nested optimization problems and with Theorem 2
we reduced rq to the solution of two linear optimization
problem. We can thus quickly calculate the maximal delay
caused by the loss of control of a given actuator.

V. RESILIENCE CONDITIONS

So far, all our results need the system to be resilient.
However, we know that verifying the resilience of a system
with inputs of finite energy is not an easy task [7], and thus we
can assume it is not trivial either with our component bounded
inputs.

Proposition 5: A system following (6) is resilient to the loss
of control over a column C if and only if it is controllable and
both T ∗M (C) and T ∗M (−C) are finite.

Proof: If system (6) is resilient, then it is controllable
a fortiori and Proposition 1 yields T ∗M (C) and T ∗M (−C) are
finite.

On the other hand, assume that system (6) is controllable
and max

{
T ∗M (C), T ∗M (−C)

}
is finite. Let w ∈ W and d ∈

Rn∗ . By controllability of system (6), there exists ū ∈ Ū and
λ > 0 such that B̄ū = λd. We split B̄ into B and C, and ū
into ud and wd. Then, ud ∈ U and B̄ū = Bud+Cwd = λd. In
the case C = 0, this equation yields Bud = λd = Bud+Cw,
so the system is resilient.

For C 6= 0, we will first show that for any w ∈ W we
can find u ∈ U such that Bu + Cw = 0. Because T ∗M (C)
and T ∗M (−C) are finite, TM (w,±C) is positive and finite for
all w ∈ W = [wmin, wmax], with TM (·, ·) defined in (24).
Take w ∈ W . Then, there exist uw+ ∈ U and uw− ∈ U such that(
Buw++Cw

)
TM (w,C) = C and

(
Buw−+Cw

)
TM (w,−C) =

−C. Define α := TM (w,C)
TM (w,C)+TM (w,−C) ∈ (0, 1) and u :=

αuw+ + (1− α)uw−. Then, u ∈ U because U is convex. Notice

that

Bu+ Cw = α
(
Buw+ + Cw

)
+ (1− α)

(
Buw− + Cw

)
=

TM (w,C)

TM (w,C) + TM (w,−C)

C

TM (w,C)

+
TM (w,−C)

TM (w,C) + TM (w,−C)

−C
TM (w,−C)

= 0.

We want to make a convex combination of u and ud to build
the desired control. If w ∈ ∂W the resulting control will not
be stronger than the adversary. So, we need to show that even
if w is a little bit outside of W we can still counteract it.
Let ε := min

(
1

2TM (wmin,C) ,
1

2TM (wmax,−C)

)
> 0. Now take

w′ ∈ (wmax, wmax + ε]. There exists u− ∈ U and u+ ∈ U
such that

(
Bu+ + Cwmax

)
TM (wmax, C) = C and

(
Bu− +

Cwmax
)
TM (wmax,−C) = −C. Then, we can define T+ > 0

such that

Bu++ Cw′= Bu++ Cwmax+ C(w′ − wmax)

= C

(
1

TM (wmax, C)
+ w′ − wmax

)
=

C

T+
.

Since w′ − wmax ≤ 1/2TM (wmax,−C), we can similarly
define T− > 0 such that

Bu−+Cw′=−C
(

1

TM (wmax,−C)
−(w′−wmax)

)
=
−C
T−

.

We take α = T+

T++T− ∈ (0, 1) which yields u′ = αu+ +
(1 − α)u− ∈ U by convexity. Then, Bu′ + Cw′ = 0. With
a similar approach we can build another u′ to counteract any
w′ ∈ [wmin − ε, wmin).

Since W is convex, w ∈ W and wd ∈ W , we can take
w′ ∈ [wmin−ε, wmax+ε] such that there exists γ ∈ (0, 1) for
which w = γwd+(1−γ)w′. We build u′ ∈ U as above to make
Bu′+Cw′ = 0. By convexity of U , u := γud+(1−γ)u′ ∈ U .
Then,

Bu+ Cw = γ
(
Bud + Cwd

)
+ (1− γ)

(
Bu′ + Cw′

)
= γλd.

Since γ > 0, we have γλ > 0 making the system resilient to
the loss of column C.

The intuition behind Proposition 5 is that a resilient system
has two properties: the ability to reach any state prior to
a malfunction, i.e., controllability, and the ability to do so
after the malfunction despite the worst undesirable inputs,
i.e., T ∗M (±C) is finite. We can now derive resilience from
a computation, making it easier to verify.

Corollary 1: System (6) is resilient to the loss of control
over a nonzero column C if and only if it is controllable, and
r+
C and r−C from Theorem 2 are in (0, 1].

Proof: If C = 0, the controllability is equivalent to
resilience and r+

C = r−C = 1. If C 6= 0 and system (6) is
resilient, then by Proposition 5, both T ∗M (±C) are finite and
system (6) is controllable, so both T ∗N (±C) are finite too.
Trivially T ∗N ≤ T ∗M , so we have both r+

C =
T∗
N (C)
T∗
M (C) ∈ (0, 1]

and r−C =
T∗
N (−C)
T∗
M (−C) ∈ (0, 1] according to Theorem 2.

On the other hand, assume that the system is controllable
and that wmin+λ+

wmax+λ+ and wmax−λ−

wmin−λ− ∈ (0, 1]. If wmin +λ+ < 0,
then wmax + λ+ ≤ wmin + λ+ because r+

C ∈ (0, 1]. This
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leads to the impossible conclusion that wmax ≤ wmin. If
wmin + λ+ = 0, then r+

C = 0. Therefore, wmin + λ+ > 0.
Let u ∈ U such that Bu = λ+C. For w ∈ W , we define
Tw := 1

w+λ+ , so that (Bu + Cw)Tw = C. Note that Tw is
positive and finite because w + λ+ ≥ wmin + λ+ > 0. Since
T ∗M (C) ≤ max

w∈W
Tw = 1

wmin+λ+ , T ∗M (C) is finite.

The same reasoning holds for r−C . We can show that wmax−
λ− < 0 and that Tw := 1

λ−−w > 0 for all w ∈ W . With
u ∈ U such that Bu = −λ−C we have (Bu + Cw)Tw =
−C. Then, T ∗M (−C) ≤ max

w∈W
Tw = 1

λ−−wmax , so T ∗M (−C) is
finite. Then, Proposition 5 states that the system is resilient.

We now have all the tools to assess the quantitative re-
silience of system (6). We summarize the main steps of this
process in Algorithm 1.

Algorithm 1: Resilience algorithm for system (6)

Data: A column C of B̄, r+
C and r−C from (17)

if rank(B̄) = n and 0 ∈ int(Ū) then
if r+

C ∈ (0, 1] and r−C ∈ (0, 1] then
rq = min{r+

C , r
−
C} # resilient to loss of C

else
rq = 0 # not resilient to loss of C

end
else

rq = 0 # not resilient to any loss

end

VI. SYSTEMS WITH MULTIPLE INTEGRATORS

We can now extend the results obtained for driftless systems
to generalized higher-order integrators.

Proposition 6: If system (6) is controllable, then the infi-
mum of (3) is achieved with the same constant control input
ū∗ ∈ Ū as T ∗N in (8), and T ∗k,N (d) = k

√
k! T ∗N (d) for all

d ∈ Rn.
Proof: If d = 0, then T ∗k,N (d) = 0 = T ∗N (d), so the

result holds. Let d 6= 0. By assumption, system ẏ(t) = B̄ū(t)
with y(0) = 0 is controllable. Following Lemma 1 there exists
a constant optimal control ū ∈ Ū such that y

(
T ∗N (d)

)
−y(0) =

d = B̄ūT ∗N (d), with T ∗N (d) > 0. Then, applying the control
input ū to (1) on the time interval [0, t1] leads to

x(t1)− x0 =

∫ t1

0

∫ t2

0

. . .

∫ tk

0

x(k)(tk+1) dtk+1 . . . dt2

=

∫ t1

0

∫ t2

0

. . .

∫ tk

0

B̄ū dtk+1 . . . dt2 = B̄ū
tk1
k!

=
d

T ∗N (d)

tk1
k!
,

since x(l)(0) = 0 for l ∈ [[1, k − 1]] and B̄ū = d
T∗
N (d) ∈ Rn is

constant. By taking t1 = k
√
k! T ∗N (d), we obtain x(t1)−x0 =

d. Thus, the state xgoal is reachable in finite time t1, so the
system (1) is controllable and T ∗k,N (d) ≤ t1.

Assume for contradiction purposes that there exists ũ ∈
Ū such that the state of (1) can reach xgoal in a time
τ < t1. Since ũ can be time-varying, we build û :=

k!
τk

∫ τ
0
. . .
∫ tk

0
ũ(tk+1) dtk+1 . . . dt2. Since ũ ∈ Ū , ũi(t) ∈

[ūmini , ūmaxi ] for all i ∈ [[1,m + p]] and t ∈ [0, τ ]. Because
ūmini and ūmaxi are constant, one can easily obtain through
k successive integrations that ûi ∈ [ūmini , ūmaxi ] for all i ∈
[[1,m + p]]. Thus, û is an admissible constant control input.
Then, we apply ũ to (1) on the time interval [0, τ ] and we
obtain

x(τ)− x0 = d =

∫ τ

0

. . .

∫ tk

0

B̄ũ(tk+1) dtk+1 . . . dt2 = B̄û
τk

k!
,

so B̄û = k!d
τk . Applying the control input û to the system

ẏ(t) = B̄ū(t) on the interval [0, T ] with T := τk

k! leads to

y(T ) =

∫ T

0

ẏ(t) dt =

∫ T

0

B̄û dt = B̄ûT =
k!d

τk
τk

k!
= d.

Thus, y can reach d in a time T = τk

k! <
tk1
k! = T ∗N (d), which

contradicts the optimality of T ∗N (d). In other words, t1 is the
minimal time for the state of (1) to reach xgoal. Therefore,
the infimum of (3) is achieved with the same constant input
ū ∈ Ū as T ∗N (d) in (8), and T ∗k,N (d) = k

√
k! T ∗N (d).

A result similar to Proposition 6 holds for the malfunctioning
reach time of order k.

Proposition 7: If system (7) is resilient, then system (2) is
resilient for all k ∈ N. The supremum and infimum of (4) are
achieved with the same constant inputs u∗ ∈ U and w∗ ∈ W
as T ∗M in (9), and T ∗k,M (d) = k

√
k! T ∗M (d) for d ∈ Rn.

Proof: We use the same calculations as in Proposition 6
but with Bu∗(w) + Cw instead of B̄ū and TM (w, d) instead
of T ∗N (d). Then, u∗ from Lemma 2 produces the best control
input u∗(w) for any w ∈ W for system (2).

We go again through the proof of Proposition 6, but this
time we use Bu∗(w∗) + Cw∗ and T ∗M (d). We conclude that
T ∗k,M (d) = k

√
k! T ∗M (d) and that w∗ from Proposition 1 is

also the worst undesirable input for system (2).
We can now evaluate the quantitative resilience of order k.
Theorem 3: If system (6) is resilient, then for all k ∈ N

system (1) is resilient and rk,q = k
√
rq .

Proof: Based on Propositions 6 and 7,
T∗
k,M (d)

T∗
k,N (d) =

k
√
k! T∗

M (d)
k
√
k! T∗

N (d)
= k

√
T∗
M (d)

T∗
N (d) , so rk,q = k

√
rq .

For a resilient system rq ∈ (0, 1], then rk,q ≥ rq . Thus,
adding integrators to a resilient system increases its quan-
titative resilience. By studying ẋ(t) = B̄ū(t) we can then
calculate the quantitative resilience of any system of the form
x(k)(t) = B̄ū(t) for k ∈ N. We will now apply our theory to
a numerical example.

VII. RESILIENCE OF AN OCTOCOPTER

Resilience of unmanned aerial vehicles (UAV) to propeller
failure is crucial to their operations over populated areas [22].
Because quadcopters have 4 inputs for 6 degrees of freedom,
they are underactuated and thus cannot be resilient to the loss
of control authority over one of their propellers [22]. Instead,
we consider the octocopter from [23] represented on Fig. 1. Its
design decouples the rotational and the translational dynamics,
allowing to keep a payload horizontal, which is crucial for
pizza delivery for instance.
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In Sections VII-A and VII-B, we will first quantify the
resilience of this UAV model to the loss of control over one of
its propellers. Since propellers cannot operate in a bang-bang
fashion, we will then add propellers’ dynamics to the UAV
model in Section VII-C. Because of this modification the UAV
dynamics are not driftless. Hence, most of our theory does
not apply but still provides good intuition on the quantitative
resilience of this octocopter model.

Fig. 1. Octocopter layout, image modified from [23].

A. Rotational dynamics
The roll, pitch and yaw angles of the octocopter are gathered

in Y := (φ, θ, ψ). The propeller i ∈ [[1, 8]] spinning at an
angular velocity ωi produces a force fi = kω2

i , with the thrust
coefficient k = 10−5N ·s−2. The airflow created by the lateral
rotors produces the extra vertical forces f9, . . . , f12 on Fig. 1.
From [23], f9+i = bf5+i for i ∈ [[0, 3]] with the coupling
constant b = 0.64. The rotational equations are linearized
around Ẏ = 0 and become Ÿ = B̄rΩ, with Ω ∈ R8 gathering
the squared angular velocities of the propellers ω2

1 , . . . , ω
2
8 and

B̄r =


lk
Ix

0 0

0 lk
Iy

0

0 0 d
Iz


−1 0 1 0 0 0 b −b

0 1 0 −1 b −b 0 0
−1 1 −1 1 0 0 0 0

,
with an arm length l = 40 cm, drag coefficient d = 3 ×
10−7m · s2 , inertias Ix = Iy = 1

2Iz = 44 × 10−3 kg ·m2,
mass m = 1.64 kg and maximal angular velocity ωmax =
838 rad · s−1 [15]. Since the input sets are nonsymmetric:
ūi := ω2

i ∈ [0, ω2
max], and the dynamics are given by a

double integrator, the theory of [8] cannot deal with this
UAV model. Using Theorem 2 we calculate the quantitative
resilience of the system v̇Y (t) = B̄rū(t) with vY := Ẏ
for the loss of control over each single propeller: rmin =[
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

]
. Based on Corollary 1, the

UAV is thus resilient to the loss of control over any single
propeller in terms of angular velocity and rq = min{r±C}.
Following Theorem 3 we deduce that Ÿ (t) = B̄rū(t) is also
resilient and r2,q =

√
rq =

√
0.1 = 0.32. Then, 1

r2,q
= 3 and

1
rq

= 10 mean that after the loss of control over any single
propeller the UAV might take as much as three times longer to
reach a given orientation, while it might be ten times slower
to reach a given angular velocity.

B. Translational dynamics

Since the rotational dynamics are resilient, we know that the
controller can maintain the UAV horizontal even after the loss
of control over a propeller. From now on, we will then assume
θ = φ = 0◦. To prevent obfuscating the following analysis,
we assume that this orientation is maintained no matter the
inputs u and w. Additionally, the yaw angle does not affect
the translational dynamics, so we also take ψ = 0◦. Then, the
translational dynamics of the octocopter are equivalent to that
of a point-mass model and they are fully decoupled from the
rotational dynamics, as desired by design [23]. The position
of the UAV is X := (x, y, z) and satisfies

mẌ =


k(ω2

5 − ω2
6)

k(ω2
7 − ω2

8)

k
∑4
i=1 ω

2
i + bk

∑8
i=5 ω

2
i −mg

 .
The horizontal propellers (ω1, . . . , ω4) are designed to sus-

tain the weight of the drone while the lateral ones (ω5, . . . , ω8)
are smaller and should mostly be used for lateral displace-
ments. Thus, we define the inputs ūi := kω2

i −
mg
4 ∈

[−mg4 , kω2
max−

mg
4 ] for i ∈ [[1, 4]] and ūi := kω2

i ∈ [0, kω2
max]

for i ∈ [[5, 8]]. Then, the translational dynamics become

Ẍ(t) = B̄tū(t), Ẋ(0) = X(0) = 0 ∈ R3, (19)

with B̄t = 1
m

0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1
1 1 1 1 b b b b

.

After the loss of control authority over a propeller, we split
B̄t and ū into B, C and u, w as before. The initial state is
the same and the malfunctioning dynamics are

Ẍ(t) = Bu(t) + Cw(t). (20)

For system v̇ = B̄tū, with v := Ẋ , Theorem 2 yields

r+
C =

[
0.766 0.766 0.766 0.766 0 0 0 0

]
,

r−C =
[
0.564 0.564 0.564 0.564 0 0 0 0

]
.

Then, according to Corollary 1 the system of dynamics
v̇ = B̄tū is only resilient to the loss of any one of the first
four propellers. Following Theorem 2, rq = min

{
r+
C , r

−
C

}
=[

0.564 0.564 0.564 0.564 0 0 0 0
]
. Since Theorem 3 only

applies to resilient systems, we use it on the first four pro-
pellers r2,q =

√
rq =

[
0.75 0.75 0.75 0.75

]
. Then, 1

rq
= 1.77

and 1
r2,q

= 1.33 mean that the after the loss of a horizontal
propeller, the UAV might need 1.77 times longer to reach a
given velocity but only 1.33 times longer to reach a desired
position.

Let us now evaluate how the loss of a propeller impacts the
vertical velocity. We take d = (0, 0,−1) and compute

T ∗M (d)

T ∗N (d)
=
[
1.77 1.77 1.77 1.77 2.26 2.26 2.26 2.26

]
. (21)

The first four values are the same as 1/rq because the direction
the worst impacted by the loss of a horizontal propeller is
along d. We now simulate various loss of controls and aim to
fly vertically the UAV along d = (0, 0,−1).

As illustrated on Fig. 2, to reach the velocity v = (0, 0,−1),
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Fig. 2. Time evolution of ż. For ’no failure’, v̇ = B̄tūmin. For ’loss of
ω1’, v̇ = Bu + Cw with C the 1st column of B̄t, w = kω2

max −
mg/4 and u = umin. For ’loss of ω5’, v̇ = Bu+Cw withC the 5th

column of B̄t, w = kω2
max and u = umin except ū6 = kω2

max to
keep the UAV on the z-axis.

the nominal system needs 0.102 s, while the malfunctioning
ones need 0.181 s and 0.231 s after the loss of ω1 and ω5

respectively. Then, the reach times increased by factors 1.77
and 2.26, exactly the values calculated in (21) as the choice
of inputs in the simulation is optimal.

We now study T ∗N (d) and T ∗M (d) for the velocity targets
d(β) = (0, cosβ, sinβ) for all β ∈ [0, 2π]. After the loss of
ω1, 1

rq
= 1.77, so T ∗M (d) ≤ 1.77 T ∗N (d) for any d ∈ Rn, as

illustrated on Fig. 3.

Fig. 3. Evolution of T ∗
N (d) and T ∗

M (d) for a velocity target d(β) =
(0, cosβ, sinβ).

Note that d( 3π
2 ) = (0, 0,−1) and as calculated in (21) we

have T ∗M (d( 3π
2 )) = 1.77 T ∗N (d( 3π

2 )) as shown on Fig. 3. The
lack of input symmetry results in T ∗M (β) 6= T ∗M (β + π) as
shown on Fig. 3. Such a situation could not be handled by the
preliminary work [8].

C. High-fidelity dynamics of the propellers

So far in this work, all inputs were bang-bang because
our definition of quantitative resilience asks for time-optimal
transfers. The inputs of the translational dynamics (19) encode
the propellers’ angular velocities, which cannot physically
change in a bang-bang fashion. Thus, in order to provide a
more realistic model and display the capabilities of our work,
we follow [24] and add first-order propellers’ dynamics:

Ẍ(t) = B̄tū(t), ˙̄u(t) =
1

τ

(
ūc(t)− ū(t)

)
, (22)

with ūc ∈ R8 a new, possibly bang-bang, command signal.
System (22) is not driftless, hence preventing a direct applica-
tion of our theory. Instead, we proceed heuristically, building
on the intuition provided by our theory to tackle this high-
fidelity model.

The time constant τ = 0.1 s is chosen to match the propeller
response in Fig. 3 of [25]. After the loss of control over the
first propeller, we split B̄t and ū as before such that

Ẍ(t) = Bu(t)+Cw(t),

{
u̇(t) = 1

τ

(
uc(t)− u(t)

)
,

ẇ(t) = 1
τ

(
wc(t)− w(t)

)
,

(23)

with the bang-bang command signals uc and wc. We will now
study how the actuators’ dynamics impact the resilience of the
UAV in the vertical direction d = (0, 0, 1).

Fig. 4. Exponential convergence of ū1 and w to their bang-bang
commands ūc

1 = ūmax
1 = kω2

max − mg
4

and wc = ūmin
1 = −mg

4
.

Since the inputs ū in (22) and (u,w) in (23) have a non-zero
rise time as shown on Fig. 4, the vertical velocities żN of (22)
and żM of (23) react smoothly and slower than their bang-
bang counterparts, as illustrated on Fig. 5. For t ≥ 0.4 s, ū
and (u,w) have converged to their commands ūc and (uc, wc),
and thus the two slopes of żN (t) in (19) and (22) are equal,
as shown on Fig. 5, and so are that of żM (t) in (20) and (23).

Fig. 5. Vertical velocities żN (t) and żM (t) of the nominal and
malfunctioning systems demonstrating the impact of the propellers’
dynamics in (22) and (23).

The slower reaction time caused by the dynamics of the
propellers is also reflected on the vertical positions zN and
zM on Fig. 6.
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Fig. 6. Vertical positions zN (t) and zM (t) of the nominal and
malfunctioning systems demonstrating the impact of the propellers’
dynamics in (22) and (23).

Because of the specific geometry of the system, the optimal
inputs for direction d = (0, 0, 1) were trivial to determine.
Then, we calculate the ratio of reach times for systems
(22) and (23), T∗

M (d)
T∗
N (d) = 1.12 and for systems (19) and

(20), T c∗
M (d)
T c∗
N (d) = 1.14. Hence, modeling the dynamics of

the propellers increases slightly the resilience of the vertical
dynamics.

However, the time-optimal commands ūc for (22) and
(uc, wc) for (23) can be time-varying for other directions
d ∈ R3 [11], and determining these optimal commands
requires complex algorithms [17], [26] because the dynamics
are not driftless anymore. Additionally, the Maximax-Minimax
Quotient Theorem of [10] does not hold, which invalidates
Theorem 1 and prevents the exact calculation of rq without
calculating T∗

M (d)
T∗
N (d) for all d ∈ R3. A stronger theory will be

needed to tackle linear non-driftless systems.

VIII. CONCLUSION AND FUTURE WORK

This paper introduced the notion of quantitative resilience
for linear systems with multiple integrators and nonsymmetric
input sets. Relying on bang-bang control theory and on two
specific optimization results, we transformed a nonlinear prob-
lem consisting of four nested optimizations into a single linear
optimization. This simplification leads to a computationally
efficient method for verifying the resilience and calculating
the quantitative resilience of driftless systems with multiple
integrators.

There are three promising avenues of future work. First,
we want to extend Theorems 1 and 2 to the simultaneous
loss of multiple actuators. Secondly, we aim at developing
the theory of quantitative resilience for non-driftless linear
systems. Finally, we want to extend our notion of resilience
from the system’s state to its output. This would allow, for
instance, to assess the resilience of a drone with respect to
its position, pitch, and roll angles, while disregarding its yaw
angle as in [22].

APPENDIX I
SUPPORTING LEMMATA

Lemma 1: If system (6) is controllable, then for all d =
xgoal − x0 ∈ Rn, the infimum T ∗N (d) of (8) is a minimum

achieved by a constant control input ū∗ ∈ Ū .
Proof: According to Theorem 4.3 of [11] there exists

a time optimal control ū∗ ∈ F(Ū). Following Pontryagin
maximum principle [11], ū∗ is bang-bang but does not switch
since the dynamics are driftless. Thus, the infimum T ∗N in (8)
is a minimum achieved by a constant control input.

Lemma 2: If system (7) is resilient, then for all d ∈ Rn∗ and
all w ∈ F(W), the infimum TM (w, d) of (9) is a minimum
achieved by a constant control input u∗(w) ∈ U and

TM (w, d) :=min
u∈U

{
T ≥ 0 :

∫ T

0

[
Bu(t) + Cw(t)

]
dt = d

}
. (24)

Proof: The infimum of (9) is TM (w, d) = inf
u∈F(U)

{
T ≥

0 :
∫ T

0
Bu(t) dt = z

}
, with z := d −

∫ T
0
Cw(t) dt ∈ Rn a

constant vector for w fixed. Since system (7) is resilient, any
z ∈ Rn is reachable. Following Lemma 1 and Theorem 4.3 of
[11], a constant time-optimal control exists and the infimum
of (9) is a minimum.

Lemma 3: For a resilient system following (7), function
TM (w, d) := min

u∈U

{
T ≥ 0 : (Bu+Cw)T = d

}
is continuous

in w ∈ W and d ∈ Rn∗ .
Proof: With X :=

{
Cw : w ∈ W

}
, Y :=

{
Bu : u ∈

U
}

and λ = 1/T we obtain TM (x, d) = 1/max
y∈Y

{
λ ≥ 0 :

x + y = λd
}

. Since ‖d‖ > 0 and λ ≥ 0, we have λ =
‖λd‖/‖d‖ = ‖x+y‖/‖d‖. Let d1 := d/‖d‖, then TM (x, d) =
‖d‖/max

y∈Y

{
‖x+ y‖ : x+ y ∈ R+d1

}
and Lemma 5.2 of [10]

states that TM is continuous in w and d.
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2019. He received his PhD in Aerospace Engi-
neering at UIUC in 2023. His research focuses
on building a mathematical control theory to
verify and quantify the resilience of autonomous
systems to partial loss of control authority over
their actuators.

Kathleen Xu received her B.S. degree in
Aerospace Engineering from the University of
Illinois Urbana-Champaign in 2021. She started
her PhD in Aeronautics and Astronautics at the
Massachussetts Institute of Technology in 2021.
Her research interests lie at the intersection of
controls and learning.

Melkior Ornik (Senior Member, IEEE) is
an assistant professor in the Department of
Aerospace Engineering and the Coordinated
Science Laboratory at the University of Illinois at
Urbana-Champaign. He received his Ph.D. de-
gree from the University of Toronto in 2017. His
research focuses on developing theory and algo-
rithms for learning and planning of autonomous
systems operating in uncertain, complex and
changing environments, as well as in scenarios
where only limited knowledge of the system is

available.




