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Abstract— Resilience to damage, component degradation,
and adversarial action is a critical consideration in design
of autonomous systems. In addition to designing strategies
that seek to prevent such negative events, it is vital that an
autonomous system remains able to achieve its control objective
even if the system partially loses control authority. While loss
of authority limits the system’s control capabilities, it may be
possible to use the remaining authority in such a way that the
system’s control objectives remain achievable. In this paper,
we consider the problem of optimal design for an autonomous
system with discrete-time linear dynamics where the available
control actions depend on adversarial input produced as a result
of loss of authority. The central question is how to partition
the set of control inputs that the system can apply in such a
way that the system state remains within a safe set regardless
of an adversarial input limiting the available control inputs
to a single partition elements. We interpret such a problem
first as a variant of a safety game, and then as a problem
of existence of an appropriate edge labeling on a graph. We
obtain conditions for existence and a computationally efficient
algorithm for determining a system design and a control policy
that preserve system safety. We illustrate our results on two
examples: a damaged autonomous vehicle and a method of
communication over a channel that ensures a minimal running
digital sum.

I. INTRODUCTION

Controller’s loss of authority over parts of an autonomous
system may happen in many scenarios:
(a) System damage and component degradation. An au-

tonomous system operating for substantial periods of
time in a remote, unknown, or hostile environment
will inevitably sustain damage or experience partial
system failures over time due to malfunctions. Examples
include unmanned aerial vehicles (UAVs) operating
over contested territory [1], search-and-rescue robots
[2], and rovers performing missions on extraterrestrial
surfaces [3].

(b) Hostile takeover. In a number of adversarial settings,
the adversary will attempt to take over elements of
the system and disturb its regular functions. A typical
setting is that of attacks on computer networks [4] and
power systems [5], [6], where, because of the vastness
of the network and heterogeneity and physical distance
between system elements, an adversarial agent may be
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able to penetrate a part of the system. Hostile takeover
scenarios also include recent successful attacks resulting
in loss of control over UAVs; see, e.g., [7], [8].

(c) User-responsive systems. Settings where an automated
controller is required to respond to (a priori unknown)
user inputs in a particular way necessarily yield a part of
the control authority to the user. Such scenarios include
resource distribution in parallel computing [9], seman-
tic web service composition [10], and communication
protocols [11].

In all of the above settings, it is critical to ensure that the
autonomous system can perform its tasks regardless of exter-
nal control inputs. A standard method of ensuring continued
functioning of the system is through imposing redundancy or
near-redundancy in design. For instance, critical components
in commercial airplanes are duplicated [12], and military
UAVs use a combination of different sensing systems for
navigation [8]. In the latter example, while these different
sensing systems do not work in the same way and, in
regular flight regime, serve to complement each other, each
system is able to ensure that the UAV can achieve basic
control objectives even if complementary systems are not
functioning.

Motivated by the above scenarios, our work seeks to
investigate how to guarantee continued safe operation of
an abstract control system in which some components are
no longer under the controller’s authority. We focus on
systems with linear driftless discrete-time dynamics, and
interpret the partial loss of control authority as limitations
on the controller’s choice of actions, based on adversarial
inputs. The control objective that we investigate is safety:
the system state is required to remain within a particular set
throughout the system run. We are interested in (i) designing
a control policy, if one exists, that guarantees safety of a
predetermined system regardless of the adversarial inputs and
(ii) determining a resilient system design — the description
of all control inputs that the system can apply for a particular
adversarial input — which ensures that there will exist a
policy satisfying (i).

The work in this paper is closely related to previous
research on control of safety-critical systems [13], [14] and
safety games [15]–[17]. In particular, as we will show, given
a system design, i.e., possible control inputs given an adver-
sarial input, a safe control policy can be interpreted as a win-
ning strategy for a turn-based safety game. This interpretation
leads to a computationally efficient algorithm for designing
a safe control policy. However, such an algorithm does not
directly provide for a computationally feasible procedure of
determining whether there exists a resilient system design,
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as each design corresponds to a different safety game, and
searching through all possible games is computationally
prohibitive. We address this challenge through a method
based on a graph-theoretical interpretation of system design.

The outline of the remainder of this paper is as follows. In
Section II we provide a motivation for theoretical framework
used in the paper, and formally describe the problems of safe
control design and resilient system design under adversarial
action. We then interpret such problems within the context
of safety games in Section III, resulting in a simple solution
to the problem of safe control design. We interpret the
problem of resilient system design in a graph-theoretical
setting in Section IV, and — using the probabilistic method,
as described in [18] — provide a sufficient condition and a
necessary condition for its solvability in Section V. Based on
the previous section, we provide a computationally efficient
algorithm for resilient system design and construction of
a safe control policy in Section VI. Section VII illustrates
our techniques on two examples: an autonomous vehicle
experiencing partial loss of control authority, and design of
codes for communication over a channel with a bounded
running digital sum.

Notation. The symbol N denotes all strictly positive
integers, N0 denotes all nonnegative integers, and Z denotes
all integers. For m ∈ N, [m] denotes the set {1, . . . ,m}. For
a set X , |X | denotes its cardinality, and 2X the set of all
its subsets. For an event B within a particular probability
distribution, Pr(B) denotes the probability of B occurring.
For a graph G = (V,E) and vertex v ∈ V , degG(v) denotes
the (outgoing, if the graph is directed) degree of v, and
mindeg(G) denotes the minimal (outgoing) degree of any
vertex in V . If G,H are graphs, G ⊆ H signifies that G is
an induced subgraph of H . Vector ei denotes the standard
basis vector consisting solely of zeros, except for a 1 in the i-
th position. Symbol ‖v‖∞ denotes the max-norm of a vector
v ∈ Rn, and ‖v‖1 denotes the 1-norm of a vector v.

II. PROBLEM STATEMENT

Consider a system operating with discrete-time dynamics

x(t+ 1) = x(t) + u(t) (1)

for all times t ∈ N0, where x(0) ∈ Zn and u ∈ U ⊆ Zn,
with a finite U . While model (1) is simple, our use of it is
supported by its wide presence in robotic exploration (see,
e.g., [19]–[21], and the references therein) as well as its use
in communication over a channel [22]. As we will discuss
in subsequent sections, (1) yields a straightforward graph-
theoretical interpretation of system motion which may lead
to generalizations for more complex models.

To provide motivation for the problems that we will pose,
let us assume that dynamics (1) represent an autonomous
system controlled by actuators A1, A2, . . . , Ap. The con-
trol effort u(t) is then given as u(a1(t), . . . , ap(t)), where
ai(t) ∈ Ai is the setting of actuator Ai at time t, and
U = {u(a1, . . . , ap) | ai ∈ Ai, i = 1, . . . , p}.

We are interested in the scenario where the controller
experiences loss of authority over some of the actuators,

say A1, . . . , Ar. Thus, the choice of a1(t), . . . , ar(t) is
not made by the controller, and any control actuation
u(t) needs to chosen in the set U(a1(t), . . . , ar(t)) =
{u(a1(t), . . . , ar(t), ar+1, . . . , ap) | ai ∈ Ai, i ≥ r+1}. We
assume that we do not possess any prior knowledge about the
inputs a1(t), . . . , ar(t); these may be subjects to adversarial
choices.

The control objective that we consider is safety. That is,
we want to ensure that x(t) ∈ S for all t ≥ 0, where S ⊆ Zn

is a predetermined set with x(0) ∈ S. We are interested in
two questions:

(i) For given sets U(a1, . . . , ar), determine, if it exists, a
control policy that guarantees system safety regardless
of choices a1(t), . . . , ar(t).

(ii) Design sets U(a1, . . . , ar) so that the above control
policy exists.

The latter question corresponds to designing the abilities
and role of each actuator in such a way that the system is
resilient to loss of authority over some of the actuators.

If the system can exhibit perfect redundancy, i.e.,
U(a1, . . . , ar) = U for every a1 ∈ A1, . . . , ar ∈ Ar,
questions (i) and (ii) are simple. However, redundancy is
often undesirable due to cost, weight, or resource consump-
tion [23]. Thus, we assume that it is impossible to execute
exactly the same control with two different actuations. Under
this assumption, {U(a1, . . . , ar) | a1 ∈ A1, . . . , ar ∈ Ar} is
a partition of U . For the sake of simpler notation, we denote
A1 ×A2 × · · · × Ar = [m] for some m ∈ N.

Questions (i) and (ii) are now formulated as follows.
Restricted partition control problem (RPCP): Let S ⊆ Zn

and x(0) ∈ S. Let U ⊆ Zn be finite, and U : [m] → 2U

such that {U(1), . . . , U(m)} is a partition of U . Does there
exist a function û : ∪∞i=1[m]i → U such that

(i) û(d1, . . . , dk) ∈ U(dk) for all d1, . . . , dk ∈ [m], and
(ii) for every d : N0 → [m], if x(t) is the solution of (1)

with u(t) = û(d(0), . . . , d(t)), then x(t) ∈ S for all
t ∈ N0?

Free partition control problem (FPCP): Let S ⊆ Zn and
x(0) ∈ S. Let U ⊆ Zn be finite. Does there exist a partition
{U(1), . . . , U(m)} for which the RPCP admits a solution?

We note that in practice the available choices of partitions
in the FPCP may be subject to constraints, e.g., physical
limitations in design of actuators. We use the unconstrained
version to provide an elegant illustration of a general ap-
proach to solving the above problems. Before moving to-
wards solutions of the RPCP and the FPCP, let us introduce
a running example.

Example 1 (Damaged vehicle): Consider an autonomous
vehicle moving on Z2 according to dynamics (1). At ev-
ery instance in time, the vehicle can perform one of five
actions: go one position to the north, south, east or west,
or remain in the same position. In other words, U =
{e1,−e1, e2,−e2, (0, 0)}. The vehicle’s initial position is
given by x(0) = (0, 0), and the safe set S is given by
S = {x ∈ Z2 | ‖x‖∞ ≤ 1}. The setup is graphically
illustrated in Fig. 1.



Let us first consider the RPCP with m = 2 and U(1) =
{e1, e2}, U(2) = {−e1,−e2, (0, 0)}. In such a case, the
RPCP does not admit a solution. For instance, if the ad-
versary continually chooses d = 1, the vehicle will have to
keep moving north or east. Hence, after no more than 3 steps,
it will be forced to leave S. This situation is shown on the
left side of Fig. 1.

Fig. 1. The picture on the left illustrates a counterexample to solvability of
the RPCP for U(1) = {e1, e2}, U(2) = {−e1,−e2, (0, 0)} in Example
1. The safe set S is denoted in light green. The vehicle’s initial position
x(0) = (0, 0) is denoted by a black circle. Possible vehicle movements
from each x ∈ Zn are denoted by an arrow. Red arrows denote available
movements when the adversary chooses d = 1, and blue arrows denote
available movements when d = 2. Possible movements in the case when
the adversary chooses d(0) = d(1) = d(2) = 1 are drawn thickly. The
picture on the right illustrates of solvability of the FPCP in Example 1.
Same notation as in the left is used. The partition {U(1), U(2)} is chosen
in such a way that, regardless of the choice of d(t), the vehicle can always
remain in the dark green subset of the safe set.

On the other hand, the FPCP admits a solution for m = 2.
Let U(1) = {e1,−e1} and U(2) = {e2,−e2, (0, 0)}. Then,
when the adversary chooses d = 1 for the first time, the
vehicle can choose to move east, then west the next time,
then east again, etc. If the adversary chooses d = 2, the
vehicle can remain in place. Hence, the vehicle will always
remain within S. Such a strategy is depicted on the right side
of Fig. 1. �

We now continue towards providing a solution for the
RPCP and the FPCP.

III. GAME FORMULATION

The RPCP can be easily formulated as the question of
existence of a winning strategy in the following two-player
game.

Game 1: Let S ⊆ Zn and x(0) ∈ S. Let U ⊆ Zn be finite,
and {U(1), . . . , U(m)} be a partition of U . Let G = (V,E)
be a graph with V = Zn and E = {(x, y) | y−x ∈ U}, and
l : E → [m] a labeling given by

l(x, y) = d if y − x ∈ U(d). (2)

The game proceeds as follows. Before time t = 0, a token
is placed at x(0). At every time step t, Player 1 first chooses
an element d ∈ [m]. Then, Player 2 chooses an element
x(t+1) ∈ V such that (x(t), x(t+1)) ∈ E and l(x(t), x(t+
1)) = d, if such an element exists, and moves the token to
x(t+1). The game now proceeds to the next time step. Player
2 wins the game if it can always move the token, and the

token remains within S for all t ∈ N0. Otherwise, Player 1
wins.

Proposition 1: The RPCP admits a solution if and only if
there exists a winning strategy for Player 2 in Game 1.

Proof: By taking u(t) = x(t + 1) − x(t), it is clear that
the movement of the token in Game 1 corresponds to (1).
The requirement that (x(t), x(t+ 1)) ∈ E and l(x(t), x(t+
1)) = d corresponds to the requirement that u(t) ∈ U(d(t)).
Thus, Player 2 has a winning strategy in Game 1 if and
only if there exists u(t) ∈ U(d(t)), possibly dependent on
all previous inputs d(0), . . . , d(t), such that x(t) ∈ S. The
latter statement is exactly the statement of the RPCP.

Game 1 is a turn-based safety/reachability game with
complete information as described [16]. Thus, for finite S,
the RPCP can be solved in linear time with respect to the
size of S [16]. In the remainder of this paper, we focus on
the FPCP. In a game-theoretical setting, the FPCP can be
posed as follows.

Game 2: Let S, x(0), U , and G = (V,E) be as in
Game 1. Let m ∈ N. At time t = −1, Player 2 chooses
U(d) ⊆ U for all d ∈ [m] in such a way that {U(d) | d ∈
[m]} is a partition of U . Then, each edge (x, y) ∈ E is
labeled as in (2). After this step, the game proceeds the same
as Game 1.

Analogously to Proposition 1, it can be easily shown that
the FPCP admits a solution if and only if Player 2 has a
winning strategy in Game 2.

The problem of the existence of a winning strategy in
Game 2 can nominally be solved by reducing it to the
problem of existence of a winning strategy in Game 1.
Namely, every choice of a partition {U(d) | d ∈ [m]} at
time t = −1 generates a different instance of Game 1, so
Player 2 has a winning strategy in Game 2 if and only if there
exists a partition {U(d) | d ∈ [m]} for which Player 2 has
a winning strategy in Game 1. However, an algorithm that
determines a winning strategy for Game 2 by considering all
partitions {U(d) | d ∈ [m]} is infeasible for large U , as the
number of those partitions is not less than m|U|−m [24].

In the following section, we propose a graph-theoretical
approach to the problem of determining the existence of win-
ning strategies for Player 2 in the above games, resulting in
easily computable conditions for the existence of a partition
and a controller in the FPCP.

IV. GRAPH LABELING PROBLEM

The previous section interprets system motion as a game
on a labeled graph. By building upon this approach, we can
convert the problem of finding a partition of the set of control
inputs that admits a safe control policy — the FPCP — to
an equivalent problem of labeling of graph edges.

Theorem 1: Let S, x(0), U , and G be as in Game 1. The
FPCP admits a solution if and only if there exist an induced
subgraph GŜ = (Ŝ, EŜ) ⊆ G with Ŝ ⊆ S and a labeling
l : EŜ → [m] such that the following properties hold:
(C1) x(0) ∈ Ŝ,
(C2) for all x ∈ Ŝ,

l
(
{(x, x′) ∈ EŜ | x

′ ∈ Ŝ}
)
= [m],



and
(C3) if (x, y), (x′, y′) ∈ EŜ satisfy y − x = y′ − x′, then

l(x, y) = l(x′, y′).
Proof: As previously noted, the FPCP admits a solution

if and only if there exists a winning strategy for Player 2
in Game 2. Assume first that such a winning strategy exists,
with the corresponding partition {U(d) | d ∈ [m]} and a
labeling l : E → [m] that satisfies (2). Let us now define
GŜ = (Ŝ, EŜ) as the induced subgraph of G with its vertex
set Ŝ consisting of all the values that the system state x(t)
can possibly assume under the chosen winning strategy, for
all potential input sequences d : N0 → [m]. We claim that
GŜ , with the labeling l restricted to EŜ , satisfies (C1)–(C3).

First, since Ŝ is constructed from the winning strategy of
Player 2, x(0) ∈ Ŝ ⊆ S. Thus, (C1) holds. Property (C2)
holds because, by definition of Ŝ, for each x ∈ Ŝ there
exists a t ≥ 0 and a sequence d(0), . . . , d(t − 1) such that
x(t) = x, and for each d′ ∈ [m], setting d(t) = d′ requires
that l(x(t), x(t+ 1)) = d′. Property (C3) holds by (2).

In the other direction, assume that there exist an induced
subgraph GŜ , Ŝ ⊆ S, and a labeling function l : EŜ → [m]
that satisfies (C1)–(C3). We will prove that the FPCP admits
a solution.

Define

Ũ(d) =
{
y − x | (x, y) ∈ EŜ , l(x, y) = d

}
(3)

for all d ∈ {1, . . . ,m}, and

U(d) = Ũ(d) for all d ≤ m− 1,

U(m) = Ũ(m)
⋃(

U\
m−1⋃
d=1

Û(d)

)
.

(4)

Clearly, {U(1), . . . , U(m)} is a partition of U . We define
l̃ : E → [m] by (2), with U(d) defined as in (3)–(4). For any
(x, y) ∈ EŜ , l̃(x, y) = d if and only if y−x ∈ U(d) by (2),
which by (3)–(4) implies l(x, y) = d. Thus, l̃ and l are the
same on EŜ , so with a standard abuse of notation, we will
refer to l̃ as l in the remainder of the proof.

Let us now define û : Ŝ × [m]→ U as any function with
a following property:

û(x, d) ∈ {y − x | y ∈ Ŝ, (x, y) ∈ EŜ , l(x, y) = d}. (5)

We note that the existence of a function û that satisfies (5)
follows from (C2), although uniqueness is not guaranteed.

We claim that any system run given by x(t+1) = x(t)+
û(x(t), d(t)) results in the system state remaining within Ŝ ⊆
S, and that û(x(t), d(t)) ∈ U(d(t)) for all t ∈ N0. For the
claim that x(t) ∈ Ŝ for all t, we proceed by induction. By
(C1), x(0) ∈ Ŝ. Assume now that x(t) ∈ Ŝ. Then, x(t+1) =
x(t) + û(x(t), d(t)) ∈ Ŝ by (5).

For the claim that û(x(t), d(t)) ∈ U(d(t)) for all t, we
note that l(x(t), x(t) + û(x(t), d(t))) = d(t) by (5), so
û(x(t), d(t)) ∈ U(d(t)) by (3)–(4).

Thus, û is a solution to the RPCP for the partition
{U(1), . . . , U(m)}. Hence, the FPCP admits a solution.

Remark 1: In the latter direction in the proof of The-
orem 1, technically we constructed a memoryless policy

û : Ŝ × [m] → U instead of a memory-conscious policy
û : ∪∞i=1[m]i → U as required in the RPCP. Thus, Theorem
1 also shows that Game 1 and Game 2 admit a winning
strategy for Player 2 if and only if they admit a memoryless
winning strategy, which was also discussed in [16].

With Theorem 1 in mind, the FPCP can be transformed
into the following problem.

Invariant subgraph labeling problem (ISLP): Let S, x(0),
U , m, and G be as in Game 1. Let m ∈ N. Determine
whether there exist an induced subgraph GŜ = (Ŝ, EŜ) ⊆ G

with Ŝ ⊆ S and a labeling l : EŜ → [m] which satisfy (C1)–
(C3).

Let us briefly note that if one was to omit requiring
(C3) from the ISLP, such a problem reduces to finding
an induced subgraph GŜ ⊆ G with x(0) ∈ Ŝ ⊆ S and
mindeg(GŜ) ≥ m. This problem is a variant of the minimum
subgraph of minimum degree problem; see, e.g., [25] and the
references therein. We now proceed to determine sufficient
and necessary conditions for the ISLP to admit a solution.

V. CONDITIONS FOR A GOOD LABELING

As discussed above, property (C2) in Theorem 1 trivially
imposes a simple necessary condition for the ISLP to admit
a solution.

Proposition 2: If there exist an induced subgraph GŜ and
a labeling l satisfying the conditions of ISLP, then

mindeg(GŜ) ≥ m.
The condition given in Proposition 2 is not sufficient for

existence of a labeling satisfying the conditions of the ISLP.
The following example gives an induced subgraph GŜ ⊆ G
with mindeg(GŜ) ≥ m such that no labeling l : EŜ → [m]
satisfies (C2)–(C3).

Example 2: Consider n = 2, m = 3, x(0) = 0, S =
{x ∈ Z2 | ‖x‖1 ≤ 1}, and U = {u ∈ Z2 | ‖u‖∞ = 1}.
Let Ŝ = S. Clearly, x(0) ∈ Ŝ, and, as illustrated in
Fig. 2, mindeg(GŜ) ≥ m. Nonetheless, S does not admit a
labeling satisfying both (C2) and (C3). Assume otherwise.
Let l : EŜ → [m] be such a labeling. By (C3), l is
translation-invariant. Thus, we denote by l̂(1) the label of
all edges that point north (i.e., (x, y) ∈ EŜ such that
y − x = (0, 1)), l̂(2) the label of NE edges ((x, y) ∈ EŜ

such that y−x = (1, 1)), l̂(3) for E edges, etc. By applying
(C2) to

(i) vertices (0,−1), (−1, 0), (0, 1), and (1, 0), respectively,
we can conclude that, for each k ∈ {0, 1, 2, 3}, l̂(2k),
l̂(2k + 1), and l̂(2k + 2) need to be all different (for
ease of notation, we identify l̂(0) with l̂(8)),

(ii) vertex (0, 0), we note that l̂(1), l̂(3), l̂(5), and l̂(7) need
to have three different values.

Now, from (ii), assume without loss of generality that
l̂(1) = 1, l̂(3) = 2, and l̂(5) = 3. Then, by (i) for
k = 0 and k = 1, {l̂(8), l̂(2)} = {2, 3} and {l̂(2), l̂(4)} =
{1, 3}. Hence, l̂(2) = 3, l̂(8) = 2, and l̂(4) = 1. Since
{l̂(4), l̂(6)} = {1, 2} by (i) for k = 2, we have l̂(6) = 2.
Thus, l̂(8) = l̂(6), which is in contradiction with (i) for
k = 3. �



x(0)

Fig. 2. An illustration of Example 2. The vertices of Ŝ = S and
corresponding directed edges of EŜ are denoted in black.

Even though Proposition 2 only gives a necessary con-
dition for the ISLP to admit a solution, there does exist
a related sufficient condition. Namely, if there exists an
induced subgraph GŜ with large enough mindeg(GŜ), then
there exists a labeling of EŜ which solves the FPCP. We
prove such a result using the probabilistic method (see, e.g.,
[18], [26], [27] for more details).

Theorem 2: Let S, x(0), U , and G = (V,E) be as in
Game 1. If there exists a finite induced subgraph GŜ =

(Ŝ, EŜ) ⊆ G with x(0) ∈ Ŝ ⊆ S and

mindeg(GŜ) ≥ m ln
(
m|Ŝ|

)
, (6)

then there exists a labeling l : EŜ → [m] such that GŜ and
l satisfy properties (C1)–(C3).

Proof: Let us label each element u ∈ U by l̂(u) ∈ [m],
where each label is chosen independently and uniformly. We
define l : EŜ → [m] by l(x, y) = l̂(y − x). By definition
of l, (C3) is satisfied. Property (C1) is also satisfied by the
theorem assumptions.

Let B be the event that the label l does not satisfy (C2),
i.e., that there exists a vertex x ∈ Ŝ such that

l
(
{(x, x′) ∈ EŜ | x

′ ∈ Ŝ}
)
6= [m]. (7)

Define Bx as the event that l satisfies (7) for the particular
x ∈ Ŝ. In particular, define Bi

x as the event that i /∈
l({(x, x′) ∈ EŜ | x′ ∈ Ŝ}).

If we can show that Pr(B) < 1, this will mean that there
exists at least one labeling l such that B does not occur, i.e.,
that (C1)–(C3) are all satisfied.

By the definitions of Bx and Bi
x and the union bound [28],

we obtain

Pr(B) ≥
∑
x∈Ŝ

Pr(Bx) ≥
∑
x∈Ŝ
i∈[m]

Pr(Bi
x).

Hence, if we show that

Pr(Bi
x) < 1/(m|Ŝ|) (8)

holds for all x ∈ Ŝ and i ∈ [m], we are done.
Consider the event Bi

x for fixed x ∈ Ŝ and i ∈ [m]. For
each edge (x, x′) ∈ EŜ , x′−x ∈ U is different. Thus, labels

l(x, x′) have been chosen uniformly and independently.
Consequently,

Pr(Bi
x) = Pr

(
l(x, x′) 6= i for all (x, x′) ∈ EŜ

)
=

∏
(x,x′)∈EŜ

Pr (l(x, x′) 6= i) =
∏

(x,x′)∈EŜ

(1− 1/m).

Hence, Pr(Bi
x) = (1 − 1/m)

degG
Ŝ
(x) ≤ (1 −

1/m)mindeg(GŜ). By noting that (1 − 1/m)m < e−1 (see,
e.g., [29]), we obtain Pr(Bi

x) ≤ (1 − 1/m)mindeg(GŜ) <
e−mindeg(GŜ)/m. We now obtain (8) from (6).

Theorem 2 gives a condition for solving the ISLP, i.e.,
the FPCP, based on finding a suitable subset Ŝ of the safe
set. One way of producing such a subset is by finding a
sufficiently dense subgraph of S, with a suitable definition
of density. In the interest of brevity, we omit further details.
We provide two illustrative examples of determining Ŝ in
Section VII.

Returning to the running example, construction on the
right side of Fig. 1, where mindeg(GŜ) = m < m ln(m|Ŝ|),
shows that the condition expressed in Theorem 2 is not
necessary for the solvability of the FPCP. We will return to
this example in Section VII, where we provide some intuition
for the “reason” that it yields a solution to the FPCP, even
though it does not satisfy the sufficient condition expressed
in Theorem 2.

VI. EFFICIENT LABELING ALGORITHM

The proof of Theorem 2 does not provide a mechanism
for constructing a good labeling. Instead, it merely states
that a uniformly chosen labeling will solve the FPCP with
probability 1 − Pr(B) ≥ 1 − m|Ŝ|(1 − 1/m)mindeg(GŜ).
Thus, an algorithm that randomly chooses labelings until it
reaches one that solves the FPCP is going to have expected
computational complexity no greater than

O

(
|EŜ |

1−m|Ŝ|(1− 1/m)mindeg(GŜ)

)
,

assuming that a random draw is performed in O(1) time,
and including the time to verify whether a labeling satisfies
(C2). Thus, if m|Ŝ|(1− 1/m)mindeg(GŜ) ≈ 1, a randomized
algorithm might take a substantial amount of time to finish.

We now present an alternative deterministic algorithm that
produces a correct labeling in O(|EŜ |+|U|m|Ŝ|) operations.

Algorithm 1: Let U = {u1, . . . , u|U|}. Define a labeling l̂
on U inductively as follows. Let

li ∈ argmin
l′∈[m]

∑
x∈Ŝ
j∈[m]

Pr(Bj
x | l̂(u1) = l1, . . . ,

. . . , l̂(ui−1) = li−1, l̂(ui) = l′)

(9)

and define l̂(ui) = li for i = 1, 2, . . . , |U|, where labeling
l : EŜ → [m] is given by l(x, y) = l̂(y − x) for all
(x, y) ∈ EŜ .

Theorem 3: Assume that (6) holds for a finite induced
subgraph GŜ with x(0) ∈ Ŝ ⊆ S. Let l̂ and l be defined as
in Algorithm 1. Then, GŜ and l satisfy properties (C1)–(C3).



Proof: By (9), for each i ∈ [|U|],∑
x∈Ŝ
j∈[m]

Pr(Bj
x | l̂(u1) = l1, . . . , l̂(ui) = li) ≤

∑
k∈[m]

1

m

∑
x∈Ŝ
j∈[m]

Pr(Bj
x | l̂(u1) = l1, . . . , l̂(ui) = k) =

∑
x∈Ŝ
j∈[m]

∑
k∈[m]

1

m
Pr(Bj

x | l̂(u1) = l1, . . . , l̂(ui) = k) ≤

∑
x∈Ŝ
j∈[m]

Pr(Bj
x | l̂(u1) = l1, . . . , l̂(ui−1) = li−1).

Hence, inductively,∑
x∈Ŝ
j∈[m]

Pr(Bj
x | l̂(u1) = l1, . . . , l̂(u|U|) = l|U|)

≤
∑
x∈Ŝ
j∈[m]

Pr(Bj
x) < 1,

(10)

where the last inequality holds by the proof of Theorem 2.
On the other hand, l is entirely defined by l̂(u1), . . . , l̂(u|U|).
Hence, Pr(Bj

x | l̂(u1) = l1, . . . , l̂(u|U|) = l|U|) equals either
0 or 1 for each x ∈ Ŝ, j ∈ [m]. By (10), we thus have
Pr(Bj

x | l̂(u1) = l1, . . . , l̂(u|U|) = l|U|) = 0 for all x ∈ Ŝ,
j ∈ [m], i.e., GŜ and l satisfy the conditions of the ISLP.

Proposition 3: Algorithm 1 can be performed in O(|EŜ |+
|U|m|Ŝ|) operations.

Proof: Clearly, the computational complexity of Algorithm
1 depends on the complexity of solving the optimization
problem in (9) for each i ∈ [|U|]. For each i ∈ [|U|],
x ∈ Ŝ, and j ∈ [m], if j = lk for some k ∈ {1, . . . , i} and
x + uk ∈ Ŝ, then Pr(Bj

x | l̂(u1) = l1, . . . , l̂(ui) = li) = 0.
Otherwise,

Pr(Bj
x | l̂(u1) = l1, . . . , l̂(ui) = li) =

(1− 1/m)|{i<k≤|U| | x+uk∈Ŝ}|.

Thus, if we precompute whether x+uk ∈ Ŝ for each x ∈ Ŝ
and k ∈ [|U|], and all values |{i < k ≤ |U| | x+ uk ∈ Ŝ}|,
which can be performed in O(EŜ) operations, computing (9)
can be performed in m|Ŝ| time for each i ∈ {1, . . . , |U|},
by merely updating all Pr(Bj

x | l̂(u1) = l1, . . . , l̂(ui) = li)
at the end of step i. Hence, Algorithm 1 indeed operates in
O(EŜ + |U|m|Ŝ|) time.

Provided with a labeling l : ES̃ → [m], given in Algorithm
1, the system design and control policy which solve the FPCP
are given by (3)–(4) and (5). We now proceed to illustrate
the obtained results on two practical scenarios.

VII. EXAMPLES

A. Damaged Vehicle

Having given conditions for solvability of the RPCP and
the FPCP, we return to our running example. Let us consider
a vehicle operating on V = Zn, with the ability to either

move along the coordinate axes or stay in place, i.e., U =
{0,±e1, . . . ,±en}. Naturally, only n ≤ 3 makes direct
physical sense. A similar example has been considered in
the context of safety games in [17]. However, in that paper
the agent and the adversary alternate in taking control of
the vehicle, and the focus of the paper was on efficient
computation of safe control policies for a given system
design, and not on determining a good system design.

The safety objective that we consider is that the vehicle
remains close to its initial position x(0) = 0, i.e., S =
{x | ‖x‖∞ ≤ k} for some k ∈ N0. As we showed in
Example 1, there exists a safe system design for n = 2,
m = 2, and k = 1. In this section, we are interested in
discussing the maximal loss of control that still enables a
safe system design, i.e., for a given n and k, the maximal
m such that the FPCP admits a solution.

It is clear that if k = 0, the agent cannot afford any loss
of authority, i.e., the only acceptable m equals 1. If k ≥ 1,
we claim that the maximal m equals n+ 1.

Let us first show that the FPCP has a solution for m =
n + 1. A partition {U1, . . . , Un+1} that admits a solution
to the RPCP is given by Ui = {ei,−ei} for i ≤ n, and
Un+1 = {0}. Indeed, analogously to the construction on
the right side of Fig. 1, a control policy which alternately
chooses ed and −ed every time the adversary chooses input
d ∈ [n], and 0 if the adversary chooses d = n+1, results in
the agent’s state always remaining in Ŝ = {x | ‖x‖∞ ≤ 1}.

On the other hand, if m ≥ n+ 2, since there is a total of
2n non-zero elements in U , for any partition {U1, . . . , Um},
some partition element Uj will equal {ei} or {−ei} for
some i. However, by then repeatedly choosing d(t) = j, the
adversary can be assured that ‖x(t)‖∞ = t, i.e., ‖x‖∞ > k
after finitely many steps. Thus, the maximal value of m for
which the FPCP admits a solution is indeed n+ 1.

If m = n + 1 and Ŝ = S = {x | ‖x‖∞ ≤ 1},
sufficient condition (6) from Theorem 2 does not hold, as
mindeg(GŜ) = m < m ln(m|Ŝ|). Nonetheless, the solution
to the FPCP exists. Let us briefly discuss this gap between
sufficiency and necessity of condition (6). The proof of
Theorem 2 relies on some degree of genericity of a correct
labeling, i.e., a positive probability that a randomly chosen
labeling will be correct. On the other hand, the solution to the
FPCP when m = n + 1 is highly structured. Namely, each
element of {U1, . . . , Um} needs to equal {0} or {ei,−ei}
for some i. Otherwise, there will exist Uj that equals {ei} or
{−ei} for some i, and by repeating d(t) = j, the adversary
will be able to force the system state to move arbitrarily far
away from x(0). Hence, the partition that yields a solution
to the RPCP is in fact unique up to a permutation: U(i) =
{ei,−ei} for all i ≤ n, and U(n + 1) = {0}. Thus, as
n increases, the probability of a uniformly chosen partition
yielding a solution to the RPCP tends to 0.

B. Communication over a Channel

We now move from the setting of damaged autonomous
systems to that of user-responsive systems. Consider the
framework — originally introduced in [11] — where, at



every time t, a message chosen from some finite message
set M, |M| = m, is sent over a communication channel.
Each message is encoded as a bit-string (i.e., codeword) of
some fixed length n. This codeword does not need to be the
same every time the same message is sent; there could be
multiple ways to communicate the same message. However,
two different messages cannot be encoded in the same way.

The running digital sum (RDS) x(t) is defined as the
vector consisting of differences in the number of 1’s and
0’s that were sent in each coordinate of the bit-string until
time t. Thus, x(t) satisfies (1) for x(0) = 0, where u(t) is
an encoding of the message passed at time t, with zeros in
the bit-string replaced by −1’s, and U = {−1, 1}n [22]. An
illustration of such a system for n = 2 is given in Fig. 3.

Fig. 3. An illustration of the dynamical system that describes the RDS.
The vertices of G and the corresponding directed edges of E are denoted
in black.

Encoding policies for which the RDS in a channel remains
small regardless of the passed messages naturally reduce
the effects of various categories of noise [22], [30]. Since
encodings of different messages are pairwise disjoint, the
problem of constructing encoding policies with bounded
RDS can be naturally interpreted as the FPCP, with the safe
set S = {x | ‖x‖∞ ≤ k}. In this section, we are primarily
interested in finding the smallest codeword length n such that
there exists an encoding policy for which the RDS remains
within S.

For k = 0, there clearly does not exist n which yields a
solution for the RPCP. For k = 1, the only m for which
there exists an n which yields a solution for the RPCP is
m = 1, and in that case n = 1 suffices. For k ≥ 2, a bound
on n can be obtained from Theorem 2 as follows.

Proposition 4: Let m,n ∈ N, U = {−1, 1}n, and x(0) =
0. Then, if n ≥ 3max(log2 m, 11), the FPCP admits a
solution for S = {x ∈ Zn | ‖x‖∞ ≤ 2}.

Proof: Let us define Ŝ = V1 ∪ V2, where V1 =
{−1, 1}n, and V2 = {(x1, . . . , xn) ∈ {−2, 0, 2}n | xi =
0 for at least n/2 i’s}. We note that x(0) ∈ Ŝ ⊆ S.

Let us examine the outgoing degree degGŜ
(v) of every

vertex v ∈ Ŝ in the induced subgraph GŜ ⊆ G. If v =
(v1, v2, . . . , vn) ∈ V1, then

degGŜ
(v) =

∑
i≥n/2

(
n

i

)
≥ 2n−1, (11)

as the set of neighbors of v is given by all vertices v =
(v1, . . . , vn) ∈ Zn that satisfy (i) vi ∈ {0, 2vi} for all i ∈
[n], and (ii) vi = 0 for at least n/2 i’s. If v ∈ V2, then

degGŜ
(v) ≥ 2n/2, (12)

as the set of neighbors of v is given by all v ∈ Zn that
satisfy vi ∈ {−1, 1} if vi = 0, and vi = vi/2 otherwise.
Thus, from (11) and (12), we obtain mindeg(GŜ) ≥ 2n/2.

We note that |Ŝ| = |V1|+ |V2| ≤ 2n + 3n ≤ 3n+1. Thus,
m ln(m|Ŝ|) ≤ m lnm + m(n + 1) ln 3 ≤ n2n/3 ln(2)/3 +
(n+1)2n/3 ln(3). It can be shown that n2n/3 ln(2)/3+(n+
1)2n/3 ln(3) ≤ 2n/2 for all n ≥ 33. Thus, the conditions of
Theorem 2 are satisfied.
An illustration of the construction of S̃ used in the proof of
Proposition 4 is given in Fig. 4, for m = n = 2. We note
that Fig. 4 shows that it is possible to construct a labeling
(i.e., partition {U1, U2}) even for n = 2, indicating that the
bound in Proposition 4 is very liberal.

Fig. 4. An illustration of a safe labeling for the RDS with m = 2,
n = 2. Set Ŝ is denoted in green. A control policy on Ŝ that ensures safety
is described by thicker arrows. We note that each element in Ŝ has an
outgoing thick arrow in each color pointing into Ŝ. Hence, the system state
controlled by such a law will always remain within Ŝ, for any x(0) ∈ Ŝ.

As it is necessary to use codewords (i.e., bit-strings) of
length at least dlog2 me to distinguish between m different
messages, Proposition 4 states that, if we use three times as
many bits as necessary, we can ensure that the RDS stays
within the smallest possible bounds. We remark that from the
proof of Proposition 4 it is clear that n ≥ 3max(log2 m, 11)
can be replaced by n ≥ (2 + ε)max(log2 m,nε) for any
ε ≥ 0, where nε →∞ as ε→ 0.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a preliminary discussion on control,
design, and motion planning abilities of an autonomous sys-
tem where the controller experienced a partial loss of control
authority. The paper is primarily interested in developing
sufficient and necessary conditions for existence of a safe
control policy in such a partly controlled system. In order to
obtain these conditions, we interpreted the system motion as
a variant of an adversarial safety game on a graph, where one
of the player’s moves is to label the edges of the game graph.
We showed that the safety objective in the original control
system is attainable if and only if such a game has a winning



strategy, and showed that the game has a winning strategy
if and only if there exists a labeling of the game graph
that satisfies particular properties. We found a sufficient
condition and a necessary condition for the existence of such
a labeling in terms of minimal degrees of a subgraph of the
original graph, and discussed how those conditions apply to
the motion of an autonomous vehicle operating on an n-
dimensional surface and to communication using a set of
codewords of length n with a bounded running digital sum.

The primary avenue of future work is in broadening the
scope of the considered framework. In addition to discussing
system dynamics more general than (1) — which may be
achieved by considering two-stage motions on a graph, one
stage being involuntary (”drift”), and the other resulting from
the performed actions — it is meaningful to consider a
broader class of control specifications, rather than solely
safety. In general, tasks for autonomous systems are often
expressed by a temporal logic specification (e.g., “visit area
A infinitely many times, never go into area B, and eventu-
ally reach area C”). Previous work on designing provably
correct control policies — i.e., policies that are guaranteed
to result in the system behavior satisfying a temporal logic
specification — primarily deals with systems whose control
abilities are not compromised; see [31] for a thorough study.
While there is a substantial body of work (see, e.g., [32] and
the references therein) on systems whose control capabilities
may depend on the environment, procedures for determining
provably correct control policies for such systems are com-
putationally complex. Providing simple graph-based criteria
for existence of a system design that admits a correct control
policy would present a significant next step towards ensuring
system resilience under partial loss of control authority.
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