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Abstract

After a loss of control authority over thrusters of the Nauka module, the International Space Station lost attitude control for
45 minutes with potentially disastrous consequences. Motivated by this scenario, we investigate the continued capability of
control systems to perform their task despite partial loss of authority over their actuators. We say that a system is resilient to
such a malfunction if for any undesirable inputs and any target state there exists an admissible control driving the state to the
target. Building on controllability conditions and differential games theory, we establish a necessary and sufficient condition
for the resilience of linear systems. As their task might be time-constrained, ensuring completion alone is not sufficient. We also
want to estimate how much slower the malfunctioning system is compared to its nominal performance. Relying on Lyapunov
theory we derive analytical bounds on the reach times of the nominal and malfunctioning systems in order to quantify their
resilience. We illustrate our work on the ADMIRE fighter jet model and on a temperature control system.
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1 Introduction

After the Nauka module docked to the International
Space Station (ISS), a software failure caused a misfire
of the module’s thrusters, leading to a loss of attitude
control of the whole station for 45 minutes [7]. Eventu-
ally, other thrusters on the ISS were fired to counteract
the uncontrolled and undesirable thrust until the Nauka
module ran out of fuel. Motivated by such events, [9]
introduced the notion of a partial loss of control author-
ity over actuators where some of the actuators of a sys-
tem start producing uncontrolled and thus possibly un-
desirable inputs within their full range of actuation. To
identify these faulty actuators, we assume sensors mon-
itor each actuator in real time [16]. Our first objective is
then one of resilient reachability, i.e, verifying whether
for all possible outputs of the malfunctioning actuators,
the controlled ones can steer the system to its target [9].
Our second objective is to estimate the maximal time
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penalty caused by such a malfunction.

Classically, changing or unknown dynamics are stud-
ied through robust, adaptive, and fault-tolerant con-
trol theories. However, robust control needs the unde-
sirable inputs to be significantly smaller than the con-
trols [36]. Since the loss of control authority over ac-
tuators may produce large undesirable inputs, robust
control performs poorly [10]. In turn, adaptive control
tries to estimate unknown parameters before they have
time to change significantly [5], which may not be possi-
ble for uncontrolled inputs. Such a situation would typ-
ically prevent convergence of the estimators and lead to
mediocre adaptive control performance [36]. As for fault-
tolerant theory, actuator failure investigations are usu-
ally limited either to actuators “locking in place” and
producing constant inputs [34] or to actuators with re-
duced effectiveness [4, 37]. Since uncontrolled actuators
can still produce a full range of inputs, loss of control
authority over actuators is not covered by existing fault-
tolerant theory [4].

On the other hand, loss of control authority falls within
the framework of differential games because the mal-
functioning actuators can be modeled by adversaries as
in [23,33]. However, these works do not constitute appro-
priate starting points for a resilient reachability study
due to the unbounded inputs of [23] and the complexity
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of the theory of [33].

Concerning our second objective, quantitative resilience
was introduced in [13, 14] as the maximal ratio of the
minimal reach times for the nominal and malfunctioning
systems. However, the exact calculation of quantitative
resilience for systems with driftless dynamics [11] does
not extend to general linear systems since the minimal
reach time in such systems does not have an analytical
expression [6].

The main contributions of this work are fourfold. Firstly,
relying on the differential games theory of Hájek [21]
and the controllability conditions of Brammer [15], we
establish simple necessary and sufficient conditions to
verify the resilient stabilizability of linear systems, i.e.,
whether the origin is resiliently reachable from any ini-
tial state. Secondly, we extend Hájek’s duality theorem
in order to study the resilient reachability of affine tar-
gets. Thirdly, we use zonotopic underapproximations of
reachable sets [2,19] to determine what states are guar-
anteed to be resiliently reachable. Finally, we employ
Lyapunov theory [25] to establish analytical bounds on
the quantitative resilience of linear systems.

The remainder of this work is organized as follows. Sec-
tion 2 introduces the system dynamics and the prob-
lems of interest. Section 3 provides background results.
Section 4 establishes necessary and sufficient conditions
for resilient stabilizability of linear systems. Section 5
extends these conditions to affine targets and describes
zonotopic underapproximations of the resiliently reach-
able set of linear systems. Section 6 derives analytical
bounds on the quantitative resilience of linear systems.
Section 7 illustrates our theory on a fighter jet model
and a temperature control system.

Notation: We denote the integer interval from a to b, in-
clusive, with [[a, b]]. For a set Λ ⊆ C, we say thatRe(Λ) ≤
0 (resp. Re(Λ) = 0) if the real part of each λ ∈ Λ verifies
Re(λ) ≤ 0 (resp. Re(λ) = 0). The norm of a matrix A is

∥A∥ := sup
x ̸=0

∥Ax∥
∥x∥ = max

∥x∥=1
∥Ax∥ and the set of its eigenval-

ues is λ(A). If A is positive definite, denoted A ≻ 0, then
its extremal eigenvalues are λAmin and λAmax, andA gener-

ates a vector norm ∥x∥A :=
√
x⊤Ax. The controllability

matrix of pair (A,B) is C(A,B) =
[
BAB . . . An−1B

]
.

The zero matrix of size n ×m is denoted by 0n,m, the
identity matrix of size n is In, the vector of ones is 1n,
and the vector of zeros except for a 1 in position i is ei.
Set Z is symmetric if−Z = Z, its convex hull is denoted
by co(Z), its interior by int(Z), and its relative interior
by relint(Z). The set of time functions taking value in
Z is denoted F(Z) :=

{
f : f(t) ∈ Z for all t ≥ 0

}
.

The closed ball of dimension b, radius r ≥ 0, and center
c is denoted Bb(c, r) :=

{
x ∈ Rb : ∥x − c∥ ≤ r

}
. The

Minkowski addition of sets X and Y in Rn is X ⊕ Y :={
x + y : x ∈ X , y ∈ Y

}
, and their Minkowski differ-

ence is X ⊖ Y :=
{
z ∈ Rn : {z} ⊕ Y ⊆ X

}
. The pro-

jection map from Rn onto Rr with r ≤ n is denoted

by projr(x1, . . . , xn) := (x1, . . . , xr) ∈ Rr. The operator
span(·) maps a set of vectors to their linear span. The
operator ⟨·, ·⟩ denotes the standard scalar product inRn.

2 Problem Statement

We consider the linear time-invariant system

ẋ(t) = Ax(t) + B̄ū(t), x(0) = x0 ∈ Rn, ū(t) ∈ Ū , (1)

with constant matrices A ∈ Rn×n and B̄ ∈ Rn×(m+p).
The admissible controls are assumed to be in Ū :=
[−1, 1]m+p, in line with previous works [12,17,25].

After a loss of control authority over p of them+p actua-
tors of system (1), the input signal ū is split between the
undesirable input signal w ∈ F(W), W := [−1, 1]p, and
the controlled input signal u ∈ F(U), U := [−1, 1]m. Ma-
trix B̄ is accordingly split in B ∈ Rn×m and C ∈ Rn×p

so that the dynamics become

ẋ(t) = Ax(t) +Bu(t) + Cw(t), x(0) = x0 ∈ Rn. (2)

We want to study how the partial loss of control author-
ity affects the stabilizability and the controllability of the
nominal dynamics.

Definition 1 System (1) is stabilizable (resp. control-
lable) if there exists an admissible control signal ū ∈
F(Ū) driving the state of system (1) from any x0 ∈ Rn

to 0 ∈ Rn (resp. to any xtg ∈ Rn).

To adapt these two properties to system (2), we first
need the notion of resilient reachability introduced in [9].

Definition 2 A target xtg ∈ Rn is resiliently reachable
from x0 ∈ Rn by system (2) if for all w ∈ F(W), there
exists T ≥ 0 and u ∈ F(U) such that u(t) only depends
on w([0, t]) and the solution to (2) exists, is unique, and
x(T ) = xtg.

Note that u(t) is allowed to depend on w(t) thanks to
real time sensors on all actuators of the system, even on
the malfunctioning ones.

Definition 3 System (2) is resiliently stabilizable
(resp. resilient) to the loss of the actuators correspond-
ing to C if 0 ∈ Rn (resp. every xtg ∈ Rn) is resiliently
reachable from any x0 ∈ Rn by system (2).

We are now led to our first problem.

Problem 1 Determine whether system (2) is resiliently
stabilizable and/or resilient.

Even if system (2) is not resilient, it might still be able
to resiliently reach some targets, just not all of Rn.

Problem 2 Determine the states xtg ∈ Rn that are re-
siliently reachable from a given x0 ∈ Rn by system (2).

For time-constrainedmissions, resilience is not sufficient.
We also need to quantify how much slower the malfunc-
tioning system is compared to the nominal one. To do
so, we follow [13] and introduce the nominal reach time

T ∗
N (x0, xtg) := inf

ū∈F(Ū)

{
T > 0 : x(T ) = xtg

in system (1)

}
, (3)
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the malfunctioning reach time

T ∗
M (x0, xtg) := sup

w∈F(W)

{
inf

u∈F(U)

{
T > 0 : x(T ) = xtg

in system (2)

}}
,

(4)
and the quantitative resilience

rq(xtg) := inf
x0 ∈Rn

T ∗
N (x0, xtg)

T ∗
M (x0, xtg)

. (5)

If x0 = xtg, then T
∗
N = T ∗

M = 0 and we take the con-
vention that their ratio is 1. If xtg is reachable from
x0 by system (1), then Theorem 4.3 of [29] states that
the inf in (3) becomes min since Ū is compact and con-
vex. Similarly, T ∗

M in (4) is achieved by optimal signals
w∗ ∈ F(W) and u∗ ∈ F(U) when system (2) is resilient.

The only way to calculate u∗ without any future knowl-
edge of w∗ is to solve the intractable Isaac’s main equa-
tion [8], which is the differential games counterpart of
the Hamilton-Jacobi-Bellman (HJB) equation. Accord-
ing to [24], Isaac’s main equation is even more difficult
to solve than the HJB equation, which usually results in
intractable partial differential equations [29]. Hence, [8]
produces only suboptimal solutions, itself concluding
that its practical contribution is minimal.

Instead of the setting of [8], we choose [32], where u∗

and w∗ are unique, bang-bang [31], and make a time-
optimal transfer from x0 to xtg. The controller knows
that w∗ will be chosen to make T ∗

M the longest. Thus,
u∗ is chosen to react optimally to this worst undesirable
input. Then,w∗ is chosen, and to make T ∗

M the longest, it
is the same as the controller had predicted. Hence, from
an outside perspective it appears as if the controller built
u∗ knowing w∗ in advance, as reflected by (4). Then, T ∗

M
is time-optimal and can be meaningfully compared with
T ∗
N , leading to the following problem.

Problem 3 Quantify the resilience of system (2).

We will now provide the background results upon which
we build our theory.

3 Background Results

We first introduce Hájek’s differential games approach
[21] which relies on dynamics

ẋ(t) = Ax(t)+z(t), x(0) = x0 ∈ Rn, z(t) ∈ Z, (6)
where Z ⊆ Rn is the Minkowski difference between the
set of admissible control inputs BU :=

{
Bu : u ∈ U

}
and the opposite of the set of undesirable inputs CW :={
Cw : w ∈ W

}
, i.e.,

Z := BU ⊖ (−CW)

=
{
z ∈ BU : z − Cw ∈ BU for all w ∈ W

}
.

Theorem 1 (Hájek’s duality theorem [21])
The state of system (2) can be driven to 0 ∈ Rn at time T
for all w ∈ F(W) by control signal u ∈ F(U) if and only
if the state of system (6) can be driven to 0 at time T by
a control signal z ∈ F(Z), and Bu(·) = z(·)− Cw(·).
Informally,Z represents the control available after coun-

teracting any undesirable input. Since Ū is symmetric,
compact, and convex, sets BU and CW also have these
properties by linearity. According to [27], Z is then also
symmetric, compact, and convex.

Theorem 1 transforms the resilient stabilizability of sys-
tem (2) into the stabilizability of system (6). Because in-
puts are bounded, Kalman’s stabilizability condition [23]
do not apply, instead we employ Corollary 3.6 of [15].

Theorem 2 (Stabilizability condition [15])
If Ū ∩ ker(B̄) ̸= ∅ and int(co(Ū)) ̸= ∅, then system
(1) is stabilizable if and only if rank

(
C(A, B̄)

)
= n,

Re
(
λ(A)

)
≤ 0, and there is no real eigenvector v of A⊤

satisfying v⊤B̄ū ≤ 0 for all ū ∈ Ū .
The first condition of Theorem 2 ensures the existence
of a control canceling B̄ū so that the state can be main-
tained at an equilibrium. The rank condition is Kalman’s
[15] and the last two conditions guarantee that the drift
term Ax does not prevent stabilization. If Ū = Rm, The-
orem 2 reduces to the usual stabilizability condition.

To verify controllability we use Corollary 3.7 of [15],
which is very similar to Theorem 2 except that the eigen-
values of A must have a zero real part to avoid creating
a drift preventing the reachability of affine targets.

Theorem 3 (Controllability condition [15])
If Ū ∩ ker(B̄) ̸= ∅ and int(co(Ū)) ̸= ∅, then sys-
tem (1) is controllable if and only if rank

(
C(A, B̄)

)
= n,

Re
(
λ(A)

)
= 0, and there is no real eigenvector v of A⊤

satisfying v⊤B̄ū ≤ 0 for all ū ∈ Ū .
We now have all the background results to start solving
Problem 1 by investigating resilient stabilizability.

4 Resilient Stabilizability

In this section, we first establish a simple resilient stabi-
lizability condition before deriving a more complex con-
dition with a wider range of application.

Proposition 1 If int(Z) ̸= ∅, then system (2) is re-
siliently stabilizable if and only if Re

(
λ(A)

)
≤ 0.

Proof. According to Theorem 1, the resilient stabiliz-
ability of system (2) is equivalent to the stabilizability
of system (6). We apply Theorem 2 and obtain that if
Z ∩ ker(I) ̸= ∅ and int(co(Z)) ̸= ∅ in Rn, then sys-
tem (6) is stabilizable if and only if rank

(
C(A, I)

)
= n,

Re
(
λ(A)

)
≤ 0, and there is no real eigenvector v of A⊤

satisfying v⊤Iz ≤ 0 for all z ∈ Z.

Because ker(I) = {0}, the first condition becomes 0 ∈
Z. Since Z is convex, the second condition becomes
int(Z) ̸= ∅, which is equivalent to 0 ∈ int(Z) accord-
ing to Lemma 1 of Appendix A. This second condition
implies the first one, so we only keep int(Z) ̸= ∅.
We now assume that int(Z) ̸= ∅ and we simplify the last
three conditions. Since rank(I) = n, the third condition
is always true. Lemma 1 yields 0 ∈ int(Z). Thus, there
exists ε > 0 such that Bn(0, ε) ⊆ Z. If A⊤ has no real
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eigenvector, the last condition is trivially true. Other-
wise, for v be a real eigenvector of A⊤. Let z = ε v

∥v∥ ,

then z ∈ Bn(0, ε), so z ∈ Z and v⊤Iz = ε∥v∥ > 0. ■

Proposition 1 has a limited range of application because
of its requirement int(Z) ̸= ∅ in Rn, i.e., Z must be of di-
mension n. However, stabilizability does not require BU
to be dimension n, so resilient stabilizability should not
require that from Z either. We then want our condition
to rely on the relative interior of Z instead of its interior.

Definition 4 The relative interior relint(S) of a set S is
the interior of S considered as a subset of its affine hull.

Definition 5 The affine hull of a set S is the largest
subspace included in S with respect to inclusion.

If we apply Theorem 2 to system (6) as in Proposi-
tion 1, then int(Z) ̸= ∅ will appear. Instead, we first
need to transport system (6) into a basis adapted to Z.
Let r := dim(Z) ≤ n. If Z = ∅, we take the convention
that r = −∞ and Z := [ ] ∈ Rn×0, the empty matrix
with Im([ ]) = ∅. Otherwise, according to Lemma 2 of
Appendix A, we have 0 ∈ Z. Then, span(Z) is a vec-
tor space from which we take a basis {z1, . . . , zr} in Rn.
We define the matrix Z :=

(
z1, . . . , zr

)
∈ Rn×r with

the convention that Z = 0 ∈ Rn×1 if r = 0. Then,
Im(Z) = span(Z) and we can formulate a resilient sta-
bilizability condition less restrictive than Proposition 1.

Proposition 2 If relint(Z) ̸= ∅, then system (2) is re-
siliently stabilizable if and only if rank

(
C(A,Z)

)
= n,

Re
(
λ(A)

)
≤ 0, and there is no real eigenvector v of A⊤

satisfying v⊤z ≤ 0 for all z ∈ Z.

Proof. We apply Theorem 1 and work on system (6).
Since z1, . . . , zr are linearly independent, we complete
this sequence into a basis of Rn with V := (vr+1, . . . , vn)
and obtain a transition matrix Tz = (Z, V ). We change
basis in system (6) with x = T−1

z y so that ẋ(t) =

T−1
z ẏ(t) = T−1

z Ay(t) + T−1
z z(t) = Âx(t) + s(t), with

Â = T−1
z ATz and s(t) ∈ S := T−1

z Z =
{
T−1
z z : z ∈ Z

}
.

By definition, zi = Tzei and thus S ⊆ span({e1, . . . , er})
in Rn. Let s ∈ S. Then,

s =


s1
...
sr

0n−r,1

 =
(

Ir
0n−r,r

)(s1
...
sr

)
:= B̂ŝ,

with B̂ = T−1
z Z ∈ Rn×r and ŝ ∈ Rr, ŝ ∈ Ŝ := projr(S),

the projection of S onto Rr. Hence, the stabilizability of
system (6) is equivalent to that of system

˙̂x(t) = Âx̂(t)+ B̂ŝ(t), x̂(0) = T−1
z x0, ŝ(t) ∈ Ŝ. (7)

Applying Theorem 2 to system (7) leads to the following

stabilizability conditions: Ŝ ∩ ker(B̂) ̸= ∅, int(co(Ŝ)) ̸=
∅, Re(λ(Â)) ≤ 0, rank

(
C(Â, B̂)

)
= n, and there is no

real eigenvector v̂ of Â⊤ satisfying v̂⊤B̂ŝ ≤ 0 for all
ŝ ∈ Ŝ. We now simplify these five conditions.

(1) Since B̂ =
(
Ir
0

)
, rank(B̂) = r, and hence ker(B̂) =

{0} in Rr. Then, Ŝ ∩ ker(B̂) ̸= ∅ is equivalent to

0 ∈ Ŝ = projr(T
−1
z Z). In turn, this is equivalent

to the existence of v ∈ Rn−r such that Tz ( 0
v ) ∈ Z,

i.e., V v ∈ Z. By definition of V , Im(V )∩span(Z) =

{0}. Thus, Ŝ ∩ ker(B̂) ̸= ∅ is equivalent to 0 ∈ Z,
i.e., relint(Z) ̸= ∅ according to Lemma 2 of Ap-
pendix A.

(2) By definition of S, int(Ŝ) ̸= ∅ in Rr is equivalent to
relint(Z) ̸= ∅ since Tz is invertible.

(3) Because Â = T−1
z ATz, λ(A) = λ(Â), and thus the

third condition becomes Re(λ(A)) ≤ 0.

(4) For i∈ [[0, n−1]], TzÂiB̂=Tz
(
T−1
z ATz

)i
B̂=AiTzB̂=

AiZ because TzB̂ = Z. Hence, Im
(
TzC(Â, B̂)

)
=

Im
(
C(A,Z)

)
. The invertibility of Tz leads to

rank
(
C(Â, B̂)

)
= rank

(
C(A,Z)

)
[20].

(5) Assume that v̂ is a real eigenvector of Â⊤ associ-

ated to the eigenvalue λ̂. Then, v := T−⊤
z v̂ is an

eigenvector ofA⊤ associated to the same eigenvalue

λ̂ [20]. For ŝ ∈ Ŝ, we have B̂ŝ ∈ S by definition.

Hence, if we define z := TzB̂ŝ, we have z ∈ Z.
Then, v̂⊤B̂ŝ = v⊤TzB̂ŝ = v⊤z. ■

To further expand the applicability of our resilient sta-
bilizability condition, we now remove the requirement
relint(Z) ̸= ∅ from Proposition 2 and obtain a necessary
and sufficient condition.

Theorem 4 (Resilient stabilizability condition)
System (2) is resiliently stabilizable if and only if
rank

(
C(A,Z)

)
= n, Re

(
λ(A)

)
≤ 0, and there is no real

eigenvector v of A⊤ satisfying v⊤z ≤ 0 for all z ∈ Z.

Proof. Let us define the three properties stated in
Proposition 2 as P1 :=“relint(Z) ̸= ∅”, P2 :=“System
(2) is resiliently stabilizable”, andP3 :=“rank

(
C(A,Z)

)
=

n, Re
(
λ(A)

)
≤ 0, and there is no real eigenvector v of

A⊤ satisfying v⊤z ≤ 0 for all z ∈ Z”. Proposition 2
states that if P1 holds, then P2 is equivalent to P3. We
will now show that when P1 is false, so are P2 and P3,
which leads to P2 equivalent to P3 no matter the status
of P1, which is exactly the statement of this theorem.

Assume that P1 is false. Then, according to Lemmas 2,
5, and 6 of Appendix A, system (2) is not resiliently
stabilizable, i.e., P2 is false. We took the convention that
Z = [ ] with rank([ ]) = −∞, so P3 is false too. ■

Note that the rank condition in Theorem 4 concerns the
pair (A,Z) and not (A,B) as one might have wanted.
For the stabilizability of these pairs to be equivalent, we
need Z and BU to have the same dimension.

Corollary 1 If dim(Z) = rank(B), then system (2) is
resiliently stabilizable if and only if rank

(
C(A,B)

)
= n,
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Re
(
λ(A)

)
≤ 0, and there is no real eigenvector v of A⊤

satisfying v⊤z ≤ 0 for all z ∈ Z.

Proof. If Z = ∅, then rank(B) = −∞, i.e., B = [], so
(2) is not resiliently stabilizable and rank

(
C(A,B)

)
̸= n.

Now assume that Z ̸= ∅. From Lemma 4 of Ap-
pendix A we get Im(B) = Im(Z). Then, Im

(
C(A,B)

)
=

Im
(
C(A,Z)

)
. In the proof of Proposition 2 we had

Im
(
C(A,Z)

)
= Im

(
TC(Â, B̂)

)
. Since T is invertible,

we obtain rank
(
C(A,B)

)
= rank

(
C(Â, B̂)

)
, and we

conclude with the rest of the proof of Proposition 2. ■

Notice how the three conditions listed in Corollary 1 are
similar to the stabilizability conditions from Theorem 2.
We are then led to the following result.

Corollary 2 If dim(Z) = rank(B), then system (2) is
resiliently stabilizable if and only if system (1) is stabi-
lizable.

Proof. Let v be a real eigenvector of A⊤. Assume first
that there exists z ∈ Z such that v⊤z > 0. By construc-
tion of B, U , and Z, we have Z ⊆ BU ⊆ B̄Ū . Hence,
there exists ū ∈ Ū such that z = B̄ū and v⊤B̄ū > 0.

On the other hand, assume that there exists ū ∈ Ū such
that v⊤B̄ū > 0. According to Lemma 4, span(Z) =
Im(B̄). Then, the convexity of Z yields the existence of
α ∈ R and z ∈ Z such that B̄ū = αz. Note that α ̸= 0
by definition of ū. If α > 0, we have v⊤z > 0. Otherwise,
α < 0 but we use the symmetry of Z to obtain −z ∈ Z
and v⊤(−z) > 0.

Thus, the condition “there is no real eigenvector v
of A⊤ satisfying v⊤z ≤ 0 for all z ∈ Z” is equiva-
lent to “there is no real eigenvector v of A⊤ satisfying
v⊤B̄ū ≤ 0 for all ū ∈ Ū” when dim(Z) = rank(B). Ac-
cording to Lemma 4 of Appendix A, Im(B) = Im(B̄).
Hence, rank

(
C(A,B)

)
= rank

(
C(A, B̄)

)
. Then, ap-

plying Corollary 1 to system (2) and Theorem 2 to
system (1) concludes the proof. ■

We have established several resilient stabilizability con-
ditions, hence solving the first half of Problem 1. We will
now tackle its second part concerning affine targets.

5 Resilient Reachability

In this section we extend Hájek’s duality theorem [21] to
affine targets and study the resilience of linear systems.

Theorem 5 (Extended duality theorem)
The state of system (2) can be driven to xtg ∈ Rn at time
T for all w ∈ F(W) by control signal u ∈ F(U) if and
only if the state of system (6) can be driven to xtg at time
T by a control signal z ∈ F(Z), andBu(·) = z(·)−Cw(·).

Proof. Consider system (2) with a target state xtg ∈Rn,

xtg ̸= 0. Let X(t) :=
(

x(t)−xtg

Axtg

)
∈ R2n. Then,

Ẋ(t) = A2X(t) +B2u(t) + C2w(t),

X(0) = X0 ∈ R2n, u(t) ∈ U , w(t) ∈ W,
(8)

A2=
(

A In
0n,n 0n,n

)
, B2=

(
B

0n,m

)
, C2=

(
C

0n,p

)
and X0=

(
x0−xtg

Axtg

)
.

Let the target set be G =
{
( 0
a ) ∈ R2n

}
= {0}n × Rn.

Since 0 ∈ C2W, we can apply Hájek’s second duality
theorem of [21] stating that G is resiliently reachable in
time T fromX0 by system (8) if and only if G is reachable
in time T from X0 by the following system

Ẋ(t) = A2X(t) + v2(t), X(0) = X0, (9)

v2(t) ∈ V2 := B2U ∩
[
(B2U ⊕ GA2

)⊖ (−C2W)
]
⊆ R2n,

where GA2 is the largest subspace of G invariant by A2.

Take g = ( 0
a ) ∈ G, then A2g =

(
A In

0n,n 0n,n

)
( 0
a ) = ( a0 ).

Hence, A2g ∈ G ⇐⇒ a = 0, i.e., GA2
= {0}2n. Thus,

V2=
{
v ∈B2U : v−C2w ∈B2U , for allw∈W

}
= Z×{0}n,

because of the architecture of B2 and C2. Then, system
(9) is related to system (6) the same way that system (8)
is related to system (2). Therefore, the following state-
ments are equivalent:

• xtg is resiliently reachable by system (2),
• G is resiliently reachable by system (8),
• G is reachable by system (9),
• xtg is reachable by system (6). ■

Theorem 5 transforms resilience of system (2) into
bounded controllability of system (6), which we verify
with Theorem 3.

We can easily adapt the results of Section 4 to the re-
silience case by reusing the same proofs, except that we
use Theorems 5 and 3 instead of Theorems 1 and 2.

Proposition 3 If int(Z) ̸= ∅, then system (2) is re-
silient if and only if Re(λ(A)) = 0.

Corollary 3 If dim(Z) = rank(B), then system (2) is
resilient if and only if system (1) is controllable.

Theorem 6 (Resilience condition)
System (2) is resilient if and only if Re

(
λ(A)

)
= 0,

rank
(
C(A,Z)

)
= n, and there is no real eigenvector v of

A⊤ satisfying v⊤z ≤ 0 for all z ∈ Z.

We now have all the results necessary to solve Prob-
lem 1. However, the condition Re

(
λ(A)

)
= 0 in Theo-

rem 6 is not satisfied by most systems, that are hence
not resilient. This reasoning led us to Problem 2, i.e., the
determination of the resiliently reachable set of system
(2). Following Theorem 5, we will now study the reach-
able set of system (6) given by

R(T, x0) :=

 eAT
(
x0 +

∫ T

0
e−Atz(t) dt

)
with z(t) ∈ Z for all t ∈ [0, T ]

 .
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Because analytical study of R(T, x0) is difficult, most
of the research tries to approximate it (see [19] and
references therein). We want inner approximations of
R(T, x0) in order to determine the states that are guar-
anteed to be resiliently reachable. We will then present
a method of zonotopic underapproximation of R(T, x0)
combining the approaches of [19] and [2].

Definition 6 A zonotope S ⊆ Rn is a set parametrized
by a center c ∈ Rn and generators g1, . . . , gq ∈ Rn ex-
pressed as S := {c+

∑q
i=1 αigi : αi ∈ [−1, 1]} and is de-

noted S = (c, g1, . . . gq).

Note that BU is a zonotope of center 0 and generators
Bi, the columns of B. Similarly, CW = (0, C1, . . . , Cp).
However, Z is not a zonotope in general since these sets
are not closed under Minkowski difference except for
some specific scenarios, as detailed in [2].

Following [2], we build an underapproximation of Z
with a symmetric zonotope

(
0, g1, . . . , gr

)
⊆ Z by

removing or contracting the generators of BU . We
apply the method described in [19] to compute ef-
ficiently an inner approximation of R(T, x0). For
N ∈ N, N ≥ 1, we define δt := T

N , Ω0 := {x0},
V :=

{∫ δt

0
eA(δt−t)z(t) dt : z(t) ∈ Z for t ∈ [0, δt]

}
, and

the recursion Ωi+1 := eAδtΩi ⊕ V . Note that Ωi is the
exact reachable set R(i δt, x0).

However, V is not a zonotope and cannot be com-
puted exactly. Thus, we define the zonotope Ṽ :=(
0,
∫ δt

0
eA(δt−t)g1 dt, . . . ,

∫ δt

0
eA(δt−t)gr dt

)
, and Ṽ ⊆ V

since Ṽ corresponds to piecewise constant components
of z(t) in

(
0, g1, . . . , gr

)
.

Then, we build Ω̃0 = Ω0 = {x0} and Ω̃i+1 := eAδtΩ̃i⊕Ṽ ,

which yields Ω̃i ⊆ Ωi for all i ≥ 0. Since linear maps and
Minkowski sums are straightforward on zonotopes [2,19],

Ω̃i is an easily computable inner approximation of the
reachable set R(i δt, x0). Note that the precision of the
approximation increases with N .

Before implementing this solution to Problem 2 in Sec-
tion 7.1, we need to answer Problem 3 by quantifying
the resilience of linear systems.

6 Quantitative Resilience

Let us now investigate more complex missions where
the target needs to be reached by a certain time. In
such scenarios it is crucial to evaluate the maximal time
penalty incurred by the malfunctioning system.

Unlike in the driftless case [13], the optimal reach times
T ∗
N (3) and T ∗

M (4) cannot be reduced to a linear op-
timization and elude analytical expressions [6]. Follow-
ing [17] and [32] we could numerically compute these
reach times, but not the quantitative resilience rq (5)
since it would require computing T ∗

N (x0) and T ∗
M (x0)

for all x0 ∈ Rn. Instead, using Lyapunov theory [25], we
establish analytical bound on these two reach times for

the target xtg = 0 and analytically approximate rq.

6.1 Nominal reach time

Assume that A is Hurwitz. Then, for any Q ≻ 0 there
exists P ≻ 0 such that PA + A⊤P = −Q [25]. Let us
consider any such pair (P,Q). We define the Lyapunov
function V (x) := x⊤Px = ∥x∥2P [26]. Then, for x follow-
ing (1) we have

V̇ (x) = ẋ⊤Px+ x⊤Pẋ = x⊤(A⊤P + PA)x+ 2x⊤PB̄ū

= −x⊤Qx+ 2x⊤PB̄ū. (10)

We will now bound T ∗
N (x0).

Proposition 4 If system (1) is stabilizable and A is
Hurwitz, then

T ∗
N (x0) ≥ 2

λPmin

λQmax

ln

(
1 +

λQmax∥x0∥P
2λPminb

P
max

)
, (11)

with bPmax := max
{
∥B̄ū∥P : ū ∈ Ū

}
.

Proof. Because Ū is compact and convex, and system
(1) is stabilizable, there exists a time-optimal control
signal ū∗ ∈ F(Ū) driving the state from x0 to the origin
in a finite time T ∗

N (x0) [29].

We now bound V̇ using (10). Since P ≻ 0, there exists
M ∈ Rn×n such that P =M⊤M [20]. Then, x⊤PB̄ū =
(Mx)⊤MB̄ū ≥ −∥Mx∥2∥MB̄ū∥2, by the Cauchy-
Schwarz inequality [20]. Notice ∥Mx∥22 = x⊤M⊤Mx =
x⊤Px = ∥x∥2P . Similarly, ∥MB̄ū∥2 = ∥B̄ū∥P .
The maximum bPmax exists since Ū is compact and the
map ū 7→ ∥B̄ū∥P is continuous. Since Q ≻ 0, we have
x⊤Qx ≤ λQmax∥x∥22 and ∥x∥22 ≤ ∥x∥2P /λPmin because P ≻
0. For x ̸= 0, we have now lower bounded (10)

V̇ (x) =
d

dt
∥x∥2P ≥ −λ

Q
max

λPmin

∥x∥2P − 2bPmax∥x∥P . (12)

Let y(t) := ∥x(t)∥P ,α :=
λQ
max

2λP
min

> 0, and β := bPmax > 0.

For x ̸= 0 we divide (12) by 2y > 0 so that ẏ ≥
f(y) := −αy − β. The solution of the differential equa-
tion ṡ(t) = f

(
s(t)

)
with s(0) = y(0) is given by s(t) =

e−αt
(
y(0) + β

α

)
− β

α .

Since f is Lipschitz, we can apply the comparison lemma
of [26] and we obtain y(t) ≥ s(t) for all t ≥ 0. At

time T = 1
α ln

(
1 + α

β y(0)
)
, we have s(T ) = 0. Be-

cause ∥x(t)∥P ≥ s(t) > 0 for all t ∈ [0, T ], we have
T ∗
N (x0) ≥ T . Substituting α and β yields (13). ■

The proof of Propositions 4, as well as subsequent Propo-
sitions 5, 6, and 7, is shorter than presented in the con-
ference paper [12] due to our use of the comparison
lemma [26]. We now upper bound T ∗

N (x0).
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Proposition 5 If rank(B̄) = n and A is Hurwitz, then

T ∗
N (x0) ≤ 2

λPmax

λQmin

ln

(
1 +

λQmin∥x0∥P
2λPmaxb

P
min

)
, (13)

with bPmin := min
{
∥B̄ū∥P : ū ∈ ∂Ū

}
.

Proof. Theminimum bPmin exists since map ū 7→∥B̄ū∥P
is continuous and ∂Ū is compact.

Because rank(B̄) = n, we can choose ū ∈ F(Ū) such that

B̄ū(t) = − x(t)
∥x(t)∥P

bPmin for x(t) ̸= 0. Indeed, assume for

contradiction purposes that for some τ ≥ 0, ū(τ) /∈ Ū ,
i.e., ∥ū(τ)∥∞ > 1. Let û := ū(τ)

∥ū(τ)∥∞
. Then, ∥û∥∞ = 1, so

û ∈ ∂Ū , but ∥B̄û∥P = ∥B̄ū(τ)∥P

∥ū(τ)∥∞
=

bPmin

∥ū∥∞
< bPmin, which

is a contradiction. Hence, the proposed control signal is
admissible and we implement it in (10).

We obtain 2x⊤PB̄ū = −2bPmin∥x∥P , so that

d

dt
∥x∥2P = V̇ (x) ≤ −λQmin

λPmax

∥x∥2P − 2bPmin∥x∥P . (14)

Let y(t) := ∥x(t)∥P , γ :=
λQ
min

2λP
max

> 0, and κ := bPmin > 0.

For x ̸= 0, dividing (14) by 2y > 0, yields ẏ ≤ f(y) :=
−γy − κ. As in Proposition 4, the comparison lemma

of [26] yields y(t) ≤ s(t) = e−γt
(
y(0) + κ

γ

)
− κ

γ for all

t ≥ 0 as long as y(t) > 0. At time T = 1
γ ln

(
1 + γ

κy(0)
)
,

s(T ) = 0. Since y
(
T ∗
N (x0)

)
= 0, T ∗

N (x0) ≤ T . ■

We now bound the malfunctioning reach time T ∗
M fol-

lowing the same method applied to T ∗
N .

6.2 Malfunctioning reach time

We use the same Lyapunov function as above, but with
x following (2), so V̇ (x) = −x⊤Qx+ 2x⊤P (Bu+ Cw).
We can now lower bound T ∗

M as we have done for T ∗
N .

Proposition 6 If system (2) is resiliently stabilizable
and A is Hurwitz, then

T ∗
M (x0) ≥ 2

λPmin

λQmax

ln

(
1 +

λQmax∥x0∥P
2λPminz

P
max

)
, (15)

with zPmax := max
{
∥z∥P : z ∈ Z

}
.

Proof. Since BU and CW are compact, Z is compact
[27], so zPmax exists. Since system (2) is resiliently sta-
bilizable, T ∗

M (x0) exists. Let w∗ ∈ F(W) and u∗ ∈
F(W) be the arguments of the optimizations in (4).
By definition of Z, z = Cw∗ + Bu∗ ∈ F(Z). Then,
∥Cw∗(t) +Bu∗(t)∥P ≤ zPmax, which yields

V̇ (x) ≥ −λ
Q
max

λPmin

∥x∥2P − 2zPmax∥x∥P .

We now proceed as in the second half of the proof of
Proposition 4 to obtain (15). ■

Similarly, we upper bound the malfunctioning reach
time.

Proposition 7 If int(Z) ̸= ∅ and A is Hurwitz, then

T ∗
M (x0) ≤ 2

λPmax

λQmin

ln

(
1 +

λQmin∥x0∥P
2λPmaxz

P
min

)
, (16)

with zPmin := min
{
∥z∥P : z ∈ ∂Z

}
.

Proof. According to Proposition 1, system (2) is re-
siliently stabilizable, hence a finite T ∗

M exists.

Since Z is compact, so is ∂Z, and thus zPmin exists. Be-
cause int(Z) ̸= ∅, according to Lemma 1, 0 ∈ int(Z).
Then, the convexity of ∥ · ∥P yields

{
z ∈ Rn : ∥x∥P ≤

zPmin

}
⊆ Z, so z(t) := −x(t)

∥x(t)∥P
zPmin ∈ Z.

Let w∗ ∈ F(W) be the argument of the maximum in
(4). Since z(t) ∈ Z, there exists u ∈ F(U) such that
z(t) = Cw∗(t)+Bu(t). Then, applyingw∗ and u leads to
an upper bound of T ∗

M since u is not necessarily optimal,
while w∗ is optimal. Hence

V̇ (x) ≤ −λQmin

λPmax

∥x∥2P − 2zPmin∥x∥P .

We now proceed as in the second half of the proof of
Proposition 5 to obtain (16). ■

We can now bound T ∗
N (x0)/T

∗
M (x0) for all x0 ∈ Rn and

hence obtain an approximate of quantitative resilience rq
which cannot be done with prior algorithms [17,32] that
only compute a single instance of T ∗

N (x0) or T
∗
M (x0).

6.3 Bounding quantitative resilience

If the system’s quantitative resilience rq is bounded by
γ ≤ rq, then in the worst case, the malfunctioning sys-
temwill take less than 1/γ times longer than the nominal
system to reach the origin from the same initial state.

Theorem 7 If int(Z) ̸= ∅ and A is Hurwitz, then

rq ≥ max

(
λPminλ

Q
min

λPmaxλ
Q
max

,
zPmin

bPmax

)
, (17)

for any P ≻ 0 and Q ≻ 0 such that A⊤P + PA = −Q.

Proof. According to Proposition 1, system (2) is
resiliently stabilizable. Since int(Z) ̸= ∅, we have
dim(Z) = n, and Z ⊆ BU ⊆ Rn yields rank(B) = n.
According to Corollary 2, system (1) is stabilizable, so we
can use (11) and (16). We define the positive constants

a :=
λP
minλ

Q
min

λP
maxλ

Q
max

, b :=
λQ
max

2λP
min

bPmax
, and c :=

λQ
min

2λP
maxz

P
min

, so

that for x0 ∈ Rn, x0 ̸= 0, (11) and (16) yield

T ∗
N (x0)

T ∗
M (x0)

≥ a
ln(1 + b∥x0∥P )
ln(1 + c∥x0∥P )

:= f(∥x0∥P ).

Then, according to (5), rq ≥ inf
x0 ∈Rn

f(∥x0∥P ).
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If b = c, then f(s) = a for all s ≥ 0, so rq ≥ a. If b > c,
then f is increasing, so inf

{
f(s) : s > 0

}
= lim

s→0
f(s).

L’Hôpital’s Rule [28] yields

lim
s→0

f(s) = lim
s→0

a
ln(1 + bs)

ln(1 + cs)
= lim

s→0
a

b
1+bs
c

1+cs

=
ab

c
.

Then, f(0) = ab
c =

zP
min

bPmax
> a. If c > b, then f is

decreasing, so inf
{
f(s) : s ≥ 0

}
= lim

s→+∞
f(s) = a

by L’Hôpital’s Rule [28]. To sum up, inf
s≥ 0

f(s) =

max
(
a, ab

c

)
≤ rq. ■

We can upper bound rq using a similar approach.

Theorem 8 If rank(B̄) = n, A is Hurwitz, and system
(2) is resiliently stabilizable, then

rq ≤ max

(
λPmaxλ

Q
max

λPminλ
Q
min

,
zPmax

bPmin

)
, (18)

for any P ≻ 0 and Q ≻ 0 such that A⊤P + PA = −Q.

Proof. With our assumptions we are allowed to use
Propositions 5 and 6. We define the positive constants

a :=
λP
maxλ

Q
max

λP
min

λQ
min

, b :=
λQ
min

2λP
maxb

P
min

, and c :=
λQ
max

2λP
min

zP
max

, so

that for x0 ∈ Rn, x0 ̸= 0, (13) and (15) yield

T ∗
N (x0)

T ∗
M (x0)

≤ a
ln(1 + b∥x0∥P )
ln(1 + c∥x0∥P )

:= g(∥x0∥P ).

Then, according to (5), rq ≤ inf
x0 ∈Rn

g(∥x0∥P ). This func-
tion g is similar to f in the proof of Theorem 7, and thus
rq ≤ inf

x0 ∈Rn
g(∥x0∥P ) = max

(
a, a b

c

)
, yielding (18). ■

Theorems 7 and 8 bound rq and hence solve Problem 3.
Wewill now apply the developed theory to two examples.

7 Numerical Results

We will first study the resilient reachability of the AD-
MIRE fighter jet model [18], before quantifying the re-
silience of a temperature control system.

7.1 Resilient reachability of the ADMIRE fighter jet
model

The ADMIRE model has already served as an applica-
tion case in several control frameworks [10, 22] and is
illustrated on Fig. 1.

Relying on the simulation package Admirer4p1 1 we run
the ADMIRE simulation in MATLAB and obtain the
linearized dynamics atMach 0.3 and altitude 2000m.We
scale B̄ so that the input set of each actuator from [18] is
scaled to [−1, 1]. The states and matrices of the system

Ẋ(t) = AX(t) + B̄ū(t) are given below.

1
https://app.box.com/s/r9wfyjd9o4pq2if9xhd17yxeqc36j7ei

Fig. 1. The ADMIRE fighter jet model. Image modified from
[18] with a different color for each independent actuator.

Consider a scenario in which, after sustaining damage,
an actuator of the fighter jet starts producing uncon-
trolled and possibly undesirable inputs. By studying B̄,
we gain intuition on the resilience of the jet. The effect of
the yaw (resp. pitch) thrust vectoring on the yaw (resp.
pitch) rate is larger than that of all the other actuators
combined, which gives the intuition that the jet is not
resilient to the loss control over thrust vectoring. None
of the other actuators produce such a dominant effect,
hence giving the intuition that the jet is resilient to the
loss of control over any one of the first eight actuators.

Following Lemma 6, we test our intuition by verify-
ing whether CW ⊆ BU . These sets are zonotopes of
dimension 9, represented in MATLAB using function
zonotope(·) from the CORA package [3]. The associated
function in(·) is employed to verify their inclusion. As
expected, CW ⊆ BU for the loss of control over any one
actuator except for the thrust vectoring ones, as shown
on Fig. 2.

(a) Yaw thrust vectoring. (b) Pitch thrust vectoring.

Fig. 2. 2D projection of sets BU (blue) and CW (red) for
the loss of control over the two thrust vectoring actuators.

The eigenvalues of A do not verify either Re(λ(A)) = 0
or Re(λ(A)) ≤ 0. Thus, the system is neither resilient
nor resiliently stabilizable. However, as anticipated with
Problem 2, the linearized model is only valid locally and
hence we should only study the resilient reachability of
targets close to the linearization equilibrium.

We follow the method detailed in Section 5 to approxi-
mate the resiliently reachable set of the malfunctioning
system. Assume the pilot lost control over the right
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X =



v
α
β
p
q
r
ψ
θ
φ



velocity (m/s),
angle of attack (rad),
sideslip angle (rad),
roll rate (rad/s),
pitch rate (rad/s),
yaw rate (rad/s),
heading angle (rad),
pitch angle (rad),
roll angle (rad),

A =



−0.02 −4.65 0.37 0 −0.3 0 0 −9.81 0
0 −0.78 0.01 0 0.97 0 0 0 0
0 0 −0.19 0.12 0 −0.98 0 0 0.1
0 0 −15.47 −1.5 0 0.54 0 0 0
0 4.18 −0.01 0 −0.78 0 0 0 0
0 0 0.95 −0.09 0 −0.34 0 0 0
0 0 0 0 0 1.01 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0.12 0 0 0



B̄⊤ =



−0.62 0 0 0.37 0.67 −0.19 0 0 0
−0.62 0 0 −0.37 0.67 0.19 0 0 0
−0.4 −0.02 0 −2.27 −0.55 −0.1 0 0 0
−0.62 −0.04 0.01 −1.96 −0.88 −0.22 0 0 0
−0.62 −0.04 −0.01 1.96 −0.88 0.22 0 0 0
−0.4 −0.02 0 2.27 −0.55 0.1 0 0 0
−0.16 0 0.02 1.59 0 −0.96 0 0 0
0.08 0 0 0 −0.02 0 0 0 0
−0.53 0 0.11 −0.64 0.01 −5.34 0 0 0
−1.78 −0.11 0 0 −6.63 0 0 0 0



right canard,
left canard,
right outboard elevon,
right inboard elevon,
left inboard elevon,
left outboard elevon,
rudder,
leading edge flaps,
yaw thrust vectoring,
pitch thrust vectoring.

outboard elevon ū3. We use the CORA [3] function
minus(·, ·) to underapproximate the Minkowski dif-
ference Z = BU ⊖ CW as a zonotope (0, g1, . . . , g9),
following the method of [2]. We take T = 0.2 s and

N = 5. Then, we underapproximate R(T, x0) with Ω̃N

using the recursion Ω̃i+1 = eAδtΩ̃i ⊕ Ṽ of Section 5.

Since the malfunctioning actuator ū3 has a strong im-
pact on the roll rate p of the jet, we want to see what
range of roll rates is reachable. We compute Ω̃1, . . . , Ω̃N

and project them in 2D as shown on Fig. 3. Then, in
time T the jet can change its roll rate up to ±1.2 rad/s,
despite the loss of control over the right outboard elevon.

Fig. 3. Projection of Ω̃1, . . . , Ω̃5 on the (ϕ, p) plane.

We now study the impact ofN , i.e., of δt on the precision
of Ω̃N to approximate the real reachable set R(T, x0)
when keeping T constant. Since dim

(
R(T, x0)

)
= 9, we

will only study the impact on the range of roll rates
reachable at roll angle ϕ = 0 rad. For N = 2 the reach-
able range of roll rates is ±0.37 rad/s, while for N = 5
it is ±0.42 rad/s, and ±0.43 rad/s for N = 20, as illus-
trated on Fig. 3 and 4. Hence, as explained in Section 5,
increasing N raises nonlinearly the precision of Ω̃N and

increases linearly the computational cost since Ω̃N is a
zonotope with 9N generators.

(a) N = 2. (b) N = 20.

Fig. 4. Projection of Ω̃1, . . . , Ω̃N on the (ϕ, p) plane for dif-
ferent values of N .

Now assume that the in-flight damage responsible for
the loss of control over the elevon ū3 also initially caused
it to jerk resulting in a sudden jump in roll rate. Then,
instead of X(0) = 0 we have p(0) = 0.44 rad/s and the
goal is to stabilize the jet at the origin Xtg.

Fig. 5. Projection of Ω̃1, . . . , Ω̃5 on the (ϕ, p) plane. Initial
stateX0 is the blue dot, targetXtg is the red dot, andN = 5.
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We can see on Fig. 5 that the target only enters the
projection of the reachable set after 4 iterations of δt =
0.04 s, i.e., for t ≥ 0.16 s. By choosing a smaller δtwe can
refine the precision on the minimal entering time. How-
ever, to calculate the reachable time T ∗

M (X0, Xtg) we
need to use the CORA function in(·) to verify whether

Xtg ∈ Ω̃N since Fig. 5 is only a 2D projection of the 9D
reachable set and could be deceiving. Indeed, for p(0) =
0.5 rad/s, the 2D projection is similar to Fig. 5 with the

red dot inside the projection of Ω̃N , but Xtg /∈ Ω̃N .

We successfully demonstrated the developed resilience
theory and the zonotopic method to underapproximate
the resiliently reachable set of the ADMIRE jet model.

7.2 Temperature control system

We now illustrate our quantitative resilience bounds on
a temperature control system motivated by [35] and il-
lustrated on Fig. 6.

T1,1 T1,2 T1,3 T1,l

T2,1 T2,2 T2,3 T2,l

Tk,1 Tk,2 Tk,3 Tk,l

Fig. 6. Heat exchange graph of an office building with k floors
of l rooms, each at a temperature Ti,j .

We study a scenario where a worker remains in their
office after hours and manually opens or closes their door
and window, thus overriding the building heat controller
which aims at maintaining a target temperature Ttg.
After this loss of control, we will compare our analytical
bounds on the nominal and malfunctioning reach times
with the numerical results of [17,32]. We will also bound
the quantitative resilience of the system which could not
be done with prior work and motivated the analytical
bounds of Section 6.

The controller uses a central heater qh, central AC qAC ,
and incrementally opens doors qd and windows qw for
room specific adjustments. The controller also takes ad-
vantage of solar heating qS , heat losses through the out-
side wall ql, and heat transfers between adjoining rooms
qadj . The temperature dynamics are then

mCpṪi,j = qh− qAC + qdi,j
− qwi,j

+ qSi,j
− qli,j +

∑
qadj

with m the mass of air in each room, Cp its specific
heat capacity, qadj = aU(Tadj − Ti,j), with a the area of
the wall between rooms, and U the overall heat transfer
coefficient between adjoining rooms, which depends on
the wall materials. To have symmetric inputs, we com-
bine the heat transfers in pairs: qh−qAC =: QhACuhAC ,
qdi,j − qwi,j =: Qdwu

i,j
dw, and qSi,j − qli,j =: QSlu

i,j
Sl with

uhAC , u
i,j
dw, and u

i,j
Sl ∈ [−1, 1].

We write the dynamics as Ṫ = AT + B̄ū, with

A =
a

mCp


−2U U 0 0 . . . 0 U 0 0 . . .

U −3U U 0 . . . 0 0 U 0 . . .

0
. . .

. . .
. . .

. . .
. . .

 ,

B̄ =
1

mCp

(
QSlIkl,kl QdwIkl,kl QhAC1kl

)
,

ū⊤ =
(
u1,1Sl , . . . , u

k,l
Sl , u

1,1
dw , . . . , u

k,l
dw, uhAC

)
∈ R2kl+1 and

T⊤ =
(
T1,1, . . . , Tk,l

)
∈ Rkl. To perform numerical cal-

culations, we restrict our building to k = 1 and l = 3, as
schematized in Fig. 7.

Ttg Ttg

hallway

outsideSun

T1

qw1

qd1

qg1

qS1

ql1

T2

qw2

qd2

q12

qS2

ql2

T3

qw3

qd3

q23 q3g

qS3

ql3

Fig. 7. Scheme of the rooms and of the heat transfers. The
heater qh and AC transfers qAC are not shown for clarity.

Taking x := T − Ttg, the heat dynamics of the system
illustrated on Fig. 7 are ẋ = Ax+ B̄ū with xtg = 0 and

A =
a

mCp


−Ug1 − U12 U12 0

U12 −U12 − U23 U23

0 U23 −U23 − U3g

 .

Based on [35], we use the following values: a = 12m2,
mCp = 42186 J/K, Ug1 = 6.27W/K, U12 = 5.08W/K,
U23 = 5.41W/K, U3g = 6.27W/K, QhAC = 350W ,
Qdw = 300W , QSl = 200W , and Ttg = 293K.

Since λ(A) =
{
− 0.052,−0.033,−0.010

}
⊆ R−, A is

Hurwitz. Then, according to Theorem 6, the system is
not resilient, but it might be resiliently stabilizable. For
the loss of any one column C, rank(B) = 3 and we nu-
merically verify that −CW ⊆ int(BU). Then, following
Lemma 3, dim(Z) = 3, so int(Z) ̸= ∅. According to
Proposition 1, the system is resiliently stabilizable.

The controller wants to cool the building overnight from
an initial state x⊤0 =

(
0.8◦C, 0.7◦C, 0.9◦C

)
. However, a

worker is overriding u1dw by manually opening the door
and window in room 1. We now compare the analytical
bounds on the nominal and malfunctioning reach times
of Section 6 with the numerical results of [17, 32]. Our
bounds require pairs P ≻ 0 and Q ≻ 0 solutions of
A⊤P + PA = −Q. We generate randomly a thousand
of such pairs (P,Q) and compute bounds on T ∗

N with
(11) and (13), and on T ∗

M with (15) and (16). Another
way of choosing P relies on the linearization of (15),

which yields T ∗
M ≥ ∥x0∥P

zP
max

. This bound is maximized

when P ≻ 0 is the tightest ellipsoidal approximation of
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Z, which results in much tighter bound than stochastic
P , as shown on Fig. 8.

Fig. 8. Bounds on the malfunctioning reach time T ∗
M (x0) in

red. The dots are the upper (16) and lower bounds (15) for
1000 stochastic pairs (P,Q). The tightest bounds in green
and black result from the ellipsoidal approximations of Z.

For the given x0 the best bounds on the reach times
are 35.5 s ≤ T ∗

N (x0) = 42.5 s ≤ 54.1 s and 53 s ≤
T ∗
M (x0) = 110.5 s ≤ 135 s. Then, the rooms can take up

to T ∗
M (x0)/T

∗
N (x0) = 2.6 times longer to all reach Ttg

from the initial state Ttg+x0 after the loss of control au-
thority over u1dw, while our bounds predict a worst-case
factor of 3.8.

We were able to compute numerically T ∗
N (x0) [17] and

T ∗
M (x0) [32], but accessing rq can only be done analyti-

cally with Theorems 7 and 8. Over all x0 ∈ R3, they pre-
dict rq ∈ [0.166, 0.979]. Hence, the loss of control over
u1dw can render the damaged system up to 1/0.166 = 6
times slower to reach the target temperature from any
initial state. This information could not be obtained
with prior work and is the motivation for our analytical
bounds in Section 6.

If instead of losing control over u1dw a disgruntled worker
takes over the central heating/AC unit uhAC , the rooms
can take as much as T ∗

M (x0)/T
∗
N (x0) = 4.7 times longer

to reach Ttg from the same initial temperature, while
our bound predicts a max ratio of 9.3. These values are
larger than for the loss of u1dw because QhAC > Qdw and
the central heating/AC affects directly all 3 rooms. Ad-
ditionally, Theorem 7 yields rq ∈ [0.1, 0.37], so the mal-
functioning controller can take between 2.7 and 10 times
longer than nominally to enforce the target temperature
from any initial condition.

8 Conclusion and Future Work

This paper establishes novel necessary and sufficient con-
ditions for the resilient stabilizability and reachability of
affine targets by linear systems. Additionally, we quan-
tified the resilience of control systems to the loss of au-
thority over some of their actuators.

There are several avenues of future work. Building on
our resilient stabilizability conditions, we have started
to work on the resilience of networks to a partial loss
of control authority over actuators of a subsystem. An-
other interesting problem is to ensure the safety of crit-
ical systems by preventing them from visiting danger-

ous locations while completing their mission even after
enduring a loss of control. Future work should also aim
at extending resilience theory to nonlinear systems. The
main hurdle to this last project is to establish a new
proof of Hájek’s duality theorem. Indeed, this result is
essential for resilience theory and its current proof re-
lies on the linearity of the dynamics, hence preventing a
straightforward extension to nonlinear systems.

A Supporting Lemmata

In this appendix we provide supporting results concern-
ing sets BU , CW, and Z defined in Section 3.

Lemma 1 The interior of Z is non-empty if and only if
0 ∈ int(Z).

Proof. Since Z is convex and symmetric, so is its inte-
rior [30]. If int(Z) ̸= ∅, there exists z ∈ int(Z), by sym-
metry −z ∈ int(Z), and 0 ∈ int(Z) by convexity. The
reverse implication is trivial. ■

Lemma 2 The following statements are equivalent:
(a) 0∈ relint(Z), (b) 0∈Z, (c) Z ̸=∅, (d) relint(Z) ̸=∅.

Proof. Since relint(Z) ⊆ Z, we have (a) =⇒ (b) and
trivially, (b) =⇒ (c). Since Z is a convex subset of Rn,
(c) =⇒ (d) according to Lemma 7.33 of [1]. Because
Z is convex and symmetric, so is its relative interior
according to [30]. Then, the same proof as for Lemma 1
yields (d) =⇒ (a) which completes the proof. ■

Definition 7 The dimension of a compact set S is the
dimension of the smallest affine subspace (with respect to
inclusion) containing S [1].

Lemma 3 The relative interior of BU contains −CW
if and only if dim(Z) = rank(B).

Proof. Let q := dim(BU) ≤ n. Since U = [−1, 1]m−p,
its interior is not empty in Rm−p and thus q = rank(B).
Take q linearly independent vectors of BU denoted
by Bq := (b1, . . . , bq) and pick V := (vq+1, . . . , vn) ∈
Rn×(n−q) such that Tb := (Bq, V ) is invertible. Then,
Tb is a transition matrix with Tbei = bi for i ∈ [[1, q]].

Assume first that −CW ⊆ relint(BU). Then, there ex-
ists ε > 0 such that Tb

(
Bq(0, ε)×{0}n−q

)
⊕−CW ⊆ BU .

Informally, −CW remains in BU when it is ’extended’
by ε in all q dimensions of BU . Because Z =

{
z ∈ Rn :

{z}⊕−CW ⊆ BU
}
, we have Tb

(
Bq(0, ε)×{0}n−q

)
⊆ Z.

Then, q ≤ dim(Z). Since 0 ∈ −CW, Z ⊆ BU , and
hence dim(Z) ≤ q. Thus, dim(Z) = q = rank(B).

On the other hand, assume that dim(Z) = q. Since 0 ∈
−CW, Z ⊆ BU . Then, Z being of same dimension and
included in BU yields that (b1, . . . , bq) is also a basis of
span(Z) = Im(B). Hence, Tb is a transition matrix from
Rn to span(Z). According to Lemma 2, 0 ∈ relint(Z),
i.e, there exists δ > 0 such that Tb

(
Bq(0, δ)×{0}n−q

)
⊆
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Z. As above, the definition of Z yields Tb
(
Bq(0, δ) ×

{0}n−q
)
⊕ (−CW) ⊆ BU . Because dim(Bq(0, ε)) = q =

dim(BU), we have −CW ⊆ relint(BU). ■

Lemma 4 If dim(Z) = rank(B), then span(Z) =
Im(B) = Im(B̄).

Proof. In the proof of Lemma 3 we showed that
span(Z) = Im(B). The inclusion −CW ⊆ relint(BU)
holds according to Lemma 3 and yields Im(C) ⊆ Im(B),
and since B̄ = [B C] after adequate column permuta-
tions, we have Im(B̄) = Im([B C]) = Im(B). ■

Lemma 5 Set Z is empty if and only if set CW is not
entirely included in BU , i.e., Z = ∅ ⇐⇒ CW ⊈ BU .

Proof. If Z = ∅, then by definition, for all z ∈ BU ,
there exists w ∈ W such that z − Cw /∈ BU . Taking
z = 0 yields CW ⊈ BU .
On the other hand, assume that there exists w ∈ W such
that Cw /∈ BU . Assume for contradiction purposes that
Z ̸= ∅. Then, we can take z ∈ Z and z−Cw ∈ BU . Since
BU is symmetric, we thus have −z+Cw ∈ BU . Because
z ∈ Z and −w ∈ W, we also have z + Cw ∈ BU . The
convexity of BU yields 1

2 (−z+Cw)+
1
2 (z+Cw) ∈ BU ,

i.e., Cw ∈ BU which contradicts our first assumption.
Hence, Z = ∅. ■

Lemma 6 If CW ⊈ BU , then system (2) is not re-
siliently stabilizable.

Proof. Since CW ⊈ BU , there exists w ∈ W such that
Cw /∈ BU . The sets {Cw} and BU are nonempty, dis-
joint, convex, and compact, hence they are strongly sep-
arated according to Theorem 5.79 of [1]. Then, there
exists v ∈ Rn, v ̸= 0, c > 0, and ε > 0 such that
⟨Cw, v⟩ ≥ c+ ε, and for all u ∈ U , ⟨Bu, v⟩ ≤ c− ε. Be-
cause BU and CW are symmetric, {−Cw} and BU are
also strongly separated by the symmetric hyperplane:
⟨−Cw, v⟩ ≤ −c− ε and for all u ∈ U , ⟨Bu, v⟩ ≥ −c+ ε.

BU

Cw

−Cw
CW

v
ε

Fig. A.1. Illustration of the strong separation of sets BU
(blue) and {±Cw} (green) by symmetric hyperplanes.

If A ̸= 0, then ∥A∥ > 0. Since v ̸= 0, we can define
r := ε

∥v∥ ∥A∥ > 0. We will show that if x ∈ Bn(0, r), then

no controls u ∈ U can bring the state x closer to the
origin. Let x ∈ Bn(0, r) and first assume that ⟨x, v⟩ ≥ 0.

Then, we apply the undesirable input w and any control
u ∈ U to system (2)

⟨ẋ, v⟩ = ⟨Ax, v⟩+ ⟨Bu, v⟩+ ⟨Cw, v⟩
≥ −∥Ax∥ ∥v∥ − c+ ε+ c+ ε

≥ −∥A∥ ∥x∥ ∥v∥+ 2ε ≥ ε,

where we used the Cauchy-Schwarz inequality [20], the
definition of ∥A∥ and ∥x∥ ≤ r. Similarly, if ⟨x, v⟩ < 0, we
apply the undesirable input −w and any control u ∈ U
to system (2)

⟨ẋ, v⟩ = ⟨Ax, v⟩+ ⟨Bu, v⟩+ ⟨−Cw, v⟩
≤ ∥A∥ ∥x∥ ∥v∥+ c− ε− c− ε

≤ r∥A∥ ∥v∥ − 2ε = −ε.
Thus, the state x ∈ Bn(0, r) can be pushed away from
the origin along v. Hence, system (2) is not stabilizable.

If A = 0, we can take any x ∈ Rn such that ⟨x, v⟩ ≥ 0
(resp. ≤ 0) and obtain ⟨ẋ, v⟩ ≥ 2ε (resp. ≤ −2ε) so the
same conclusion holds. ■
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