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Losing Control of your Linear Network? Try
Resilience Theory

Jean-Baptiste Bouvier, Sai Pushpak Nandanoori Member, IEEE and Melkior Ornik Senior Member, IEEE

Abstract— Resilience of cyber-physical networks to un-
expected failures is a critical need widely recognized
across domains. For instance, power grids, telecommuni-
cation networks, transportation infrastructures and water
treatment systems have all been subject to disruptive mal-
functions and catastrophic cyber-attacks. Following such
adverse events, we investigate scenarios where a node of a
linear network suffers a loss of control authority over some
of its actuators. These actuators are not following the con-
troller’s commands and are instead producing undesirable
outputs. The repercussions of such a loss of control can
propagate and destabilize the whole network despite the
malfunction occurring at a single node. To assess system
vulnerability, we establish resilience conditions for net-
works with a subsystem enduring a loss of control authority
over some of its actuators. Furthermore, we quantify the
destabilizing impact on the overall network when such a
malfunction perturbs a nonresilient subsystem. We illus-
trate our resilience conditions on two academic examples,
on an islanded microgrid, and on the linearized IEEE 39-bus
system.

Index Terms— Networked Control Systems, Resilience,
Loss of Control, Cyber-Physical Systems.

I. INTRODUCTION

RESILIENCE of cyber-physical networks to catastrophic
events is a crucial challenge, widely recognized across

government levels [1], [2] and research fields [3], [4]. Natural
disasters, terrorist acts, and cyber-attacks all have the potential
to paralyze the cyber-physical infrastructures upon which our
society inconspicuously relies, such as power grids, telecom-
munication networks, sewage systems and transportation in-
frastructures [4]–[6]. Motivated by these issues, we investigate
the resilience of linear networks to partial loss of control
authority over their actuators. This class of malfunction, is
characterized by some of the actuators producing uncontrolled
and thus possibly undesirable outputs within their full ca-
pabilities [7]. This framework encompasses scenarios where
actuators are taken over, for instance, by a cyber-attack [5],
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[6], and scenarios where actuators become unresponsive or
damaged, for instance, by a software bug [8].

Building on fault-detection and isolation theory [9] coupled
with cyber-attack detection [5] and state reconstruction meth-
ods [6], we assume that the controller has real-time readings
of the outputs of the malfunctioning actuators. Our objective
is then to assess the network’s resilient stabilizability in the
face of these possibly undesirable inputs [7].

All of our previous work on resilience theory [7], [10],
etc., only investigated isolated systems enduring a partial
loss of control authority over their actuators. When such a
malfunctioning system is not isolated, but belongs instead
to a network of interconnected systems, a loss of control
can start a chain reaction capable of destabilizing the entire
network. Such a problem has not been studied by previous
resilience work and constitutes the main focus and novelty of
this manuscript.

Albeit using a different setting, works [3], [11] also study
the resilience of networks. Relying on observability and con-
trollability, these works quantify the network’s capabilities to
detect a perturbed state and steer it back to its nominal value
[3], [11]. Because the approach of such papers does not model
the perturbation, it cannot handle a malfunctioning actuator
producing undesirable inputs. Additionally, works [3], [6], [7],
[11] require L2 inputs, whereas we are interested in component
bounded inputs.

Traditionally, network resilience has been investigated
through topological approaches [4], [12]–[15] using the net-
work graph to reach a consensus between all nodes [12],
[13], [16]. In this setting, after a loss of control authority
over f nodes, at least 2f + 1 disjoint paths are required for
two nodes to exchange reliable information [12]. These works
typically emphasize network architecture to the detriment of
node dynamics, which are either unspecified [4], [15], [16], or
restricted to a weighted average of neighbor states [12], [13],
whereas we focus on networks of control systems with generic
linear dynamics. Our control framework is also broader than
the domain specific resilience studies focusing for instance on
public transportation networks [4], Internet routing problems
[15], or fluid transport networks [14].

In line with previous works studying actuator attacks [6],
network cyber attacks [11], distributed consensus [12], [13],
and power networks stability [17]–[20], we choose to focus on
networks with linearized dynamics. The reader will realize that
even with linear dynamics, the resilience of networks involves
a copious amount of technical calculations.

The contributions of this work are threefold.
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1) We establish an equivalence condition to characterize
resilient linear networks. This condition ensures that the
network as a whole is resiliently stabilizable despite the
loss of control authority over some actuators.

2) We quantify the resilience of fully-actuated networks
having lost control over a nonresilient subsystem. More
precisely, we calculate the maximal magnitude of un-
desirable inputs that the nonresilient subsystem can
withstand without destabilizing the rest of the network
by comparing the magnitude of perturbations due to
subsystem couplings and their individual stability.

3) We extend the resilience quantification to underactuated
networks losing control over a nonresilient subsystem.
In this scenario, the malfunctioning subsystem prevents
network stabilization but a feedback controller can main-
tain the network state within bounds.

The remainder of this paper is organized as follows.
Section II introduces the network dynamics and states our
problems of interest. Section III establishes stabilizability
conditions for resilient linear networks. Section IV quantifies
the resilient stabilizability of networks losing control authority
over nonresilient subsystems. We illustrate our work on two
academic examples, on an islanded microgrid, and on the
linearized IEEE 39-bus system in Section V. Finally, Appen-
dices I, II, and III gather the proofs of our results.

Notation: We denote the integer interval from a to b,
inclusive, with [[a, b]]. For a set Λ ⊆ C, we say that Re(Λ) ≤ 0(
resp. Re(Λ) = 0

)
if the real part of each λ ∈ Λ verifies

Re(λ) ≤ 0
(
resp. Re(λ) = 0

)
. The norm of a matrix A is

∥A∥ := sup
x ̸=0

∥Ax∥
∥x∥ = max

∥x∥=1
∥Ax∥, its image is Im(A), and the

set of its eigenvalues is Λ(A). If A is positive definite, denoted
A ≻ 0, then its extremal eigenvalues are λA

min and λA
max and A

generates a vector norm ∥x∥A :=
√
x⊤Ax. The controllability

matrix of pair (A,B) is C(A,B) :=
[
BAB . . . An−1B

]
.

For a matrix B ∈ Rn×m and a set U ⊆ Rm, we denote
the set BU :=

{
Bu : u ∈ U

}
⊆ Rn. The block diago-

nal matrix composed of matrices A1, . . . , An is denoted by
diag(A1, . . . , An). The zero matrix of size n×m is denoted
by 0n,m, the identity matrix of size n is In, and the vector
of ones is 1n ∈ Rn. The convex hull of a set Z is denoted
by co(Z), its dimension by dim(Z), its boundary by ∂Z , its
interior by int(Z), and its orthogonal complement by Z⊥. The
set of time functions taking value in Z is denoted F(Z) :={
f : [0,+∞) → Z

}
. The Minkowski addition of sets X and

Y in Rn is X ⊕ Y :=
{
x + y : x ∈ X , y ∈ Y

}
and their

Minkowski difference is X ⊖Y :=
{
z ∈ Rn : {z}⊕Y ⊆ X

}
.

The operator span(·) maps a set of vectors to their linear span.

II. NETWORKS PRELIMINARIES

In this section, we introduce the network under study and
our two problems of interest. Inspired by [21], we consider a
network of q linear subsystems of dynamics

ẋ1(t) = A1x1(t) + B̄1ū1(t) +
∑

k∈N1

D1,kxk(t) (1-1)
...

ẋq(t) = Aqxq(t) + B̄qūq(t) +
∑

k∈Nq

Dq,kxk(t), (1-q)

with initial states xi(0) = x0
i ∈ Rni and bounded admissible

control inputs ūi(t) ∈ Ūi := [−1, 1]mi for i ∈ [[1, q]]. The
set of neighbors of subsystem i is denoted by Ni ⊆ [[1, q]]
with i /∈ Ni, while Ai ∈ Rni×ni , B̄i ∈ Rni×mi , and Di,k ∈
Rni×nk are constant matrices. Let us now define our notion
of finite-time component stabilizability.

Definition 1: Tuple (A, B̄, Ū) is stabilizable if there exists
a time T ≥ 0 and an admissible control signal ū ∈ F(Ū)
driving the state of system ẋ(t) = Ax(t) + B̄ū(t) from any
x0 ∈ Rn to x(T ) = 0.

Building on the component stabilizability of the subsystems
(1-1) to (1-q), we will derive conditions on the stabilizability
of the overall network. To do so, we define network state
X(t) :=

(
x1(t), x2(t), . . . , xq(t)

)
∈ RnΣ and control input

ū(t) :=
(
ū1(t), . . . , ūq(t)

)
∈ Ū := Ū1 × . . . × Ūq ⊆ RmΣ of

dimensions nΣ := n1 + . . .+ nq and mΣ := m1 + . . .+mq ,
respectively. Network dynamics (1) can then be written more
concisely as

Ẋ(t) = (A+D)X(t) + B̄ū(t), (2)

with initial state X(0) = X0 :=
(
x0
1, . . . , x

0
q

)
∈ RnΣ

and constant matrices A := diag(A1, . . . , Aq), B̄ :=
diag

(
B̄1, . . . , B̄q

)
and D :=

(
Di,j

)
(i,j)∈ [[1,q]]

with Di,k =

0ni,nk
if k /∈ Ni. Since our objective is to investigate

connected networks, we assume that D ̸= 0.
Following, for instance, an adversarial cyber-attack [6], [11]

of network (1), subsystem (1-q) suffers a loss of control
authority over a number pq ∈ [[1,mq]] of its mq actuators. We
split the nominal input ūq between the remaining controlled in-
puts uq ∈ F(Uq), Uq = [−1, 1]mq−pq and the uncontrolled and
possibly undesirable inputs wq ∈ F(Wq), Wq = [−1, 1]pq .
We accordingly split matrix B̄q into Bq ∈ Rnq×(mq−pq) and
Cq ∈ Rnq×pq , so that the dynamics of subsystem (1-q) become

ẋq(t) = Aqxq(t)+Bquq(t)+Cqwq(t)+
∑

k∈Nq

Dq,kxk(t), (3)

with unchanged initial state xq(0) = x0
q ∈ Rnq . We adopt the

resilience framework of [7], [10] where controller uq(t) has
real-time knowledge of the undesirable inputs wq(t) thanks to
sensors located on each actuator. This assumption of real-time
knowledge was relaxed in [22] by considering a controller
inflicted by a constant actuation delay. Beyond this additional
layer of complexity, the resilience conditions were extremely
similar to those with immediate knowledge of the perturba-
tions, which is why we make this simplifying assumption.

Our central objective is to study how the partial loss of
control authority over actuators of subsystem (1-q) affects the
stabilizability of the whole network. To adapt this property to
malfunctioning system (3), we first need the notion of resilient
reachability introduced in [7].

Definition 2: A target xgoal ∈ Rn is resiliently reachable
from x0 ∈ Rn by malfunctioning system ẋ(t) = Ax(t) +
Bu(t) + Cw(t) if for all w ∈ F(W), there exists T ≥ 0
and u ∈ F(U) such that u(t) only depends on w(t) and the
solution exists, is unique, and x(T ) = xgoal.

Definition 3: Tuple (A,B,C,U ,W) is resiliently stabiliz-
able if 0 ∈ Rn is resiliently reachable from any x0 ∈ Rn by



BOUVIER et al.: LOSING CONTROL OF YOUR LINEAR NETWORK? TRY RESILIENCE THEORY (JUNE 2023) 3

malfunctioning system ẋ(t) = Ax(t) +Bu(t) + Cw(t).
Network dynamics (2) are also impacted by the loss of

control authority in subsystem (1-q). We define the network
control input u(t) :=

(
ū1(t), . . . , ūq−1(t), uq(t)

)
∈ U :=

Ū1 × . . . × Ūq−1 × Uq ⊆ RmΣ−pq . Network dynamics (2)
then become

Ẋ(t) = (A+D)X(t) +Bu(t) + Cwq(t), (4)

with unchanged initial state X(0) = X0 ∈ RnΣ and constant
matrices B = diag

(
B̄1, . . . , B̄q−1, Bq

)
, C =

(
0nΣ−nq,pq

Cq

)
.

Definition 4: Network (4) is resiliently stabilizable if tuple(
A+D,B,C,U ,Wq

)
is resiliently stabilizable.

We are now led to the following problem of interest.
Problem 1: Assuming that tuple (Aq, Bq, Cq,Uq,Wq) is

resiliently stabilizable and tuples (Ai, B̄i, Ūi) are stabilizable
for i ∈ [[1, q − 1]], under what conditions network (4) is
resiliently stabilizable?

Note that the resilience framework for network (4) allows
its control input u(t) to depend on undesirable input wq(t),
which presupposes that all subsystems are aware of the attack.

Remark 1 (Extension to non-zero targets): If instead of re-
silient stabilizability, we want to resiliently drive the state of
network (4) to any non-zero target, we need to use the notion
of controllability instead of stabilizability. As highlighted in
work [10], this change of objective barely modifies resilience
conditions and hence we only treat this case in the extended
version of this work1.

After investigating the ideal case of Problem 1 where
tuple (Aq, Bq, Cq,Uq,Wq) is resiliently stabilizable, we will
consider the more problematic scenario where it is not resilient
and study whether the rest of the network remain stabilizable
despite the perturbations arising from the coupling with mal-
functioning subsystem (3). Let χ(t) be the combined state of
all other subsystems, i.e., χ(t) :=

(
x1(t), . . . , xq−1(t)

)
Then,

χ̇(t) = Âχ(t) + B̂û(t) + D̂χ(t) +D ,qxq(t), (5)

with χ0 :=
(
x0
1, . . . , x

0
q−1

)
, Â := diag

(
A1, . . . , Aq−1

)
, B̂ :=

diag
(
B̄1, . . . , B̄q−1

)
, and û(t) :=

(
ū1(t), . . . , ūq−1(t)

)
∈

Û := Ū1 × . . . × Ūq−1 = [−1, 1]mΣ−mq . We have also split
matrix D such that D =

0n1,n1 . . . D1,q-1 D1,q

...
. . .

...
...

Dq-1,1 . . . 0nq-1,nq-1 Dq-1,q

Dq,1 . . . Dq,q-1 0nq,nq

 :=

[
D̂ D ,q

Dq, 0nq,nq

]
.

Definition 5: System (5) is resiliently stabilizable if for
every X0 ∈ RnΣ and every wq ∈ F(Wq) there exists T ≥ 0
and u ∈ F(U) such that the solution to the entire network (4)
exists, is unique, and χ(T ) = 0.

The resilient stabilizability of subsystem (5) depends on
the initial state X0 of the entire network (4) and on the
undesirable input wq perturbing state χ through the coupling
term D ,qxq in (5). If stabilizing state χ is impossible, the next
best objective would be to maintain it around the origin.

1https://arxiv.org/abs/2306.16588

Definition 6: System (5) is resiliently bounded if for every
X0 ∈ RnΣ and every wq ∈ F(Wq) there exists b ≥ 0 and
u ∈ F(U) such that the solution to the entire network (4)
exists, is unique, and ∥χ(t)∥ ≤ b for all t ≥ 0.

We can then state our second problem of interest.
Problem 2: Assuming that (Aq, Bq, Cq,Uq,Wq) is not re-

siliently stabilizable and (Ai, B̄i, Ūi) is stabilizable for i ∈
[[1, q − 1]], under what conditions system (5) is resiliently
stabilizable or resiliently bounded ?

Note that Problem 2 does not try to resiliently stabilize
subsystem (3) along with the other subsystems. Indeed, the
only way to do so would rely on the coupling term

∑
Dq,kxk,

which is going to 0 as the other subsystems are getting stabi-
lized. Therefore, malfunctioning network (4) is not resiliently
stabilizable when tuple (Aq, Bq, Cq,Uq,Wq) is not resiliently
stabilizable. We start by investigating Problem 1.

III. STABILIZABILITY OF RESILIENT NETWORKS

In this section, we build on several background results from
stabilizability and resilience theories to tackle Problem 1.

A. Stabilizability results
Malfunctioning network (4) can only be resiliently stabiliz-

able if the network was stabilizable before the malfunction.
We then start by investigating the finite-time stabilizability of
initial network (2). Since 0 ∈ int(Ū), we can use Sontag’s
stabilizability condition for systems with bounded inputs [23].

Theorem 1: Network (2) is stabilizable in finite-time if and
only if rank C

(
A+D, B̄

)
= nΣ and Re

(
Λ(A+D)

)
≤ 0.

Since Problem 1 aims at relating the resilient stabilizability
of malfunctioning network (4) to that of its subsystems, a
preliminary step in this direction is to relate the stabilizability
of initial network (2) to that of its subsystems. To do so, we
introduce µB̄ inspired from the distance to uncontrollability
of [24] as

µB̄(A) := min
D1 ∈Rn×n

{
∥D1∥ : rank C

(
A+D1, B̄

)
< nΣ

}
.

Trivially, ∥D∥ < µB̄(A) is sufficient to satisfy the rank
condition of Theorem 1.

To relate the eigenvalue condition of Theorem 1 to the
stability of all pairs (Ai, B̄i), we introduce the real stability
radius of A from [25]:

rR(A) := inf
D1 ∈Rn×n

{
∥D1∥ : max

{
Re
(
Λ(A+D1)

)}
> 0
}
.

Trivially, ∥D∥ < rR(A) is sufficient to satisfy the eigenvalue
condition of Theorem 1. We can now relate the stabilizability
of network (2) to the stabilizability of its subsystems.

Proposition 1: If ∥D∥ < min{µB̄(A), rR(A)}, then net-
work (2) and all tuples (Ai, B̄i, Ūi) are stabilizable in finite-
time for i ∈ [[1, q]].

Proof: The finite-time stabilizability of network (2)
follows directly from Theorem 1 and the definitions of µB̄(A)
and rR(A).

To obtain the stabilizability of tuples (Ai, B̄i, Ūi), we recall
that A and B̄ are block diagonal matrices of Ai and B̄i re-
spectively. Since D ̸= 0, the assumption ∥D∥ < µB̄(A) yields

https://arxiv.org/abs/2306.16588
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0 < µB̄(A), i.e., rank C(A, B̄) = nΣ. Then, rank C(A, B̄) =
nΣ is equivalent to rank C(Ai, B̄i) = ni for all i ∈ [[1, q]].

Similarly, D ̸= 0 and ∥D∥ < rR(A) yield 0 < rR(A), i.e.,
Re
(
Λ(A)

)
≤ 0. Since A is a block diagonal matrix of Ai, we

have Re
(
Λ(Ai)

)
≤ 0 for all i ∈ [[1, q]].

Then, applying Theorem 1 to ẋi(t) = Aixi(t) + B̄iūi(t)
yields the finite-time stabilizability of tuple (Ai, B̄i, Ūi).

Now that we have stabilizability conditions for initial net-
work (2), we can investigate its resilient stabilizability after a
partial loss of control authority.

B. Resilient stabilizability results

To address Problem 1, we investigate the case where tu-
ple (Aq, Bq, Cq,Uq,Wq) is resiliently stabilizable following
Definition 3. Resilience conditions established in [10] rely
on Hájek’s differential games approach [26]. These conditions
consider the following dynamics associated to malfunctioning
system (3):

ẋq(t) = Aqxq(t) + zq(t), zq(t) ∈ Zq, (6)

with unchanged initial state xq(0) = x0
q ∈ Rnq and resilient

control set Zq ⊆ Rnq . Set Zq results from the Minkowski dif-
ference between the set of admissible control inputs BqUq :={
Bquq : uq ∈ Uq

}
and the opposite of the set of undesirable

inputs CqWq :=
{
Cqwq : wq ∈ Wq

}
, i.e.,

Zq :=
(
BqUq ⊖ (−CqWq)

)
∩BqUq

=
{
zq ∈ BqUq : {zq} ⊕ (−CqWq) ⊆ BqUq

}
=
{
zq ∈ BqUq : zq − Cqwq ∈ BqUq for all wq ∈ Wq

}
.

Informally, Zq represents the remaining control available after
counteracting any undesirable input. As stated in [10], Hájek’s
duality result of [26] establishes the equivalence between the
stabilizability of system (6) and the resilient stabilizability of
tuple (Aq, Bq, Cq,Uq,Wq).

Similarly to the approach of [10], we study the resilience of
malfunctioning network (4) by constructing its resilient control
set Z :=

[
BU ⊖ (−CWq)

]
∩ BU ⊆ RnΣ . We can then state

the first resilience condition of [10].
Proposition 2 (Sufficient condition [10]): If int(Z) ̸= ∅,

then network (4) is resiliently stabilizable if and only if
Re
(
Λ(A+D)

)
≤ 0.

The main issue with Proposition 2 is the restrictive re-
quirement that Z has a non-empty interior in RnΣ . To better
understand what this requirement entails, we investigate the
structure of set Z in the following result.

Proposition 3: The resilient control set of network (4) is
the Cartesian product of the input sets of its subsystems: Z =
B̄1Ū1 × . . .× B̄q−1Ūq−1 ×Zq .

Proof: We prove this equality by showing both inclu-
sions.

Take z = (z1, . . . , zq) ∈ Z . We want to show that zi ∈
B̄iŪi for i ∈ [[1, q − 1]] and that zq ∈ Zq . Let wq be any
element in Wq . Since z ∈ BU ⊖ (−CWq), z − Cwq ∈ BU .
Additionally, since U = Ū1 × . . . × Ūq−1 × Uq , there exists

u = (ū1, . . . , ūq−1, uq) ∈ U such that

z − Cwq =


z1
...

zq−1

zq − Cqwq

 = Bu =


B̄1ū1

...
B̄q−1ūq−1

Bquq

 .

Then, zi ∈ B̄iŪi for i ∈ [[1, q−1]] and for all wq ∈ Wq we have
zq−Cqwq ∈ BqUq , i.e., zq ∈ Zq . Thus, Z ⊆ Πq−1

i=1 B̄iŪi×Zq .
On the other hand, let ūi ∈ Ūi for i ∈ [[1, q − 1]], zq ∈ Zq

and define z =
(
B̄1ū1, . . . , B̄q−1ūq−1, zq

)
. We want to show

that z ∈ Z . Let wq ∈ Wq . Since zq ∈ Zq , there exists uq ∈ Uq

such that zq − Cqwq = Bquq . Then,

z − Cwq =


B̄1ū1

...
B̄q−1ūq−1

zq

−


0
...
0
Cq

wq =


B̄1ū1

...
B̄q−1ūq−1

Bquq

 ,

i.e., z − Cwq ∈ BU . Thus, z ∈ Z and Πq−1
i=1 B̄iŪi ×Zq ⊆ Z .

Now that we have a better understanding of the structure of
set Z , we can reformulate Proposition 2.

Proposition 4: If rank(B̄i) = ni for all i ∈ [[1, q − 1]],
int(Zq) ̸= ∅ and ∥D∥ < rR(A), then network (4) is resiliently
stabilizable.

Proof: Since rank(B̄i) = ni and Ūi = [−1, 1]mi with
B̄i ∈ Rni×mi , we have int(B̄iŪi) ̸= ∅. Then, according to
Proposition 3, int(Z) ̸= ∅. By assumption, we have ∥D∥ <
rR(A), i.e., Re(Λ(A + D)) ≤ 0. Then, Proposition 2 states
that network (4) is resiliently stabilizable.

Proposition 4 provides a straightforward resilient stabiliz-
ability condition for network (4). However, both Propositions 2
and 4 require all control matrices to be full rank, which is
not necessary for stabilizability. To remove this restrictive
requirement, work [10] relied on a matrix Z ∈ RnΣ×r with
r := dim(Z) such that Im(Z) = span(Z). In practice, matrix
Z is built by collating r linearly independent vectors from set
Z . We can now state the equivalence condition from [10].

Theorem 2 (Equivalence condition [10]): Network (4) is
resiliently stabilizable if and only if Re

(
Λ(A + D)

)
≤ 0,

rank
(
C(A+D,Z)

)
= nΣ and there is no real eigenvector v

of (A+D)⊤ satisfying v⊤z ≤ 0 for all z ∈ Z .
Following Problem 1, we want to relate the resilient stabi-

lizability of network (4) to the stabilizability of its subsystems.
Hence, we need to isolate the role played by coupling matrix
D in the resilient stabilizability of network (4).

Corollary 1: If ∥D∥ < min
{
rR(A), µZ(A)

}
and there is

no real eigenvector v of (A+D)⊤ satisfying v⊤z ≤ 0 for all
z ∈ Z , then network (4) is resiliently stabilizable.

Proof: Assumption ∥D∥ < min{rR(A), µZ(A)} satisfies
the eigenvalue and rank conditions of Theorem 2 which yields
the result.

When Z is not of full dimension, the eigenvector condition
of Corollary 1 is difficult to verify. Indeed, the space Z⊥

is non-trivial and thus might encompass a real eigenvector
of A + D even if none of the eigenvectors of A are part of
Z⊥. Intuitively, when D is small, the eigenvectors of A+D
should be ‘close’ to those of A. This intuition is formalized
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in Corollary 7.2.6 of [27], but the complexity of its statement
prevents the derivation of a simple condition to be verified by
A and D. Thus, we choose to remain with Corollary 1 and
Proposition 4 as solutions to Problem 1.

IV. STABILIZABILITY OF NONRESILIENT NETWORKS

In this section, we address Problem 2 by studying the
network-wide repercussions resulting from the partial loss of
control authority in nonresilient subsystem (3).

We are interested in the eventuality where tuple
(Aq, Bq, Cq,Uq,Wq) is not resiliently stabilizable and more
specifically to the case −CqWq ⊈ BqUq , i.e., Zq = ∅.
This condition means that subsystem (3) lost control over
actuators whose combined actions cannot be counteracted by
the remaining controlled actuators of subsystem (3). In other
words, some undesirable actions Cqwq cannot be canceled
by any admissible control Bquq , which prevents the resilient
stabilizability of subsystem q, as demonstrated in Lemma 6 of
[10].

To evaluate the resilient stabilizability of network (4), we
need to study the worst-case scenario where wq is the most
destabilizing undesirable input for subsystem (3). If Aq is not
Hurwitz, these destabilizing inputs wq can drive the state xq to
infinity. In this situation, coupling terms Di,qxq impacting sub-
systems (1-i) can become unbounded preventing to stabilize
these other subsystems. We will then focus on the case where
Aq is Hurwitz, so that the state xq cannot be forced to diverge
by wq . Then, the term D ,qxq perturbing subsystem (5) is
bounded and might be counteracted if controller B̂û is strong
enough.

To address Problem 2, we will quantify the maximal degree
of non-resilience of subsystem (3) despite which subsystem (5)
remain resiliently stabilizable in the sense of Definition 5. We
start by calculating how far can wq force state xq despite the
best uq and the Hurwitzness of Aq .

Proposition 5: If Aq is Hurwitz and −CqWq ⊈ BqUq , then
for all t ≥ 0 the following holds:

∥xq(t)∥Pq ≤ e−αqt

(∥∥x0
q

∥∥
Pq

+

∫ t

0

eαqτβq(τ) dτ

)
, (7)

for all Pq = P⊤
q ≻ 0, Qq ≻ 0 such that A⊤

q Pq+PqAq = −Qq

and with βq(τ) := z
Pq
max + ∥Dq, χ(τ)∥Pq

,

αq :=
λ
Qq

min

2λ
Pq
max

, zPq
max := max

wq ∈Wq

min
uq ∈Uq

∥∥Cqwq +Bquq

∥∥
Pq
.

Proof: Since Aq is Hurwitz, there exist matrices Pq ≻ 0
and Qq ≻ 0 such that A⊤

q Pq + PqAq = −Qq according to
Lyapunov theory [28]. Let us consider any such pair (Pq, Qq).
Then, inspired by Example 15 of [28], we study the Pq-norm
of xq , i.e., x⊤

q Pqxq = ∥xq∥2Pq
when state xq is following

dynamics (3). We obtain

d

dt
∥xq(t)∥2Pq

= ẋ⊤
q Pqxq + x⊤

q Pqẋq

= −x⊤
q Qqxq + 2x⊤

q Pq

(
Bquq + Cqwq +

q−1∑
i=1

Dq,ixi

)
.

Note that
∑q−1

i=1 Dq,ixi = Dq, χ. Since Pq ≻ 0, the Cauchy-
Schwarz inequality [27] yields

x⊤
q PqDq, χ ≤ ∥xq∥Pq∥Dq, χ∥Pq

x⊤
q Pq(Bquq + Cqwq) ≤ ∥xq∥Pq∥Bquq + Cqwq∥Pq .

We will demonstrate the stabilizing property of the control uq

minimizing ∥Bquq+Cqwq∥Pq when wq is chosen to maximize
this norm. By definition, these choices of uq and wq yield
∥Bquq + Cqwq∥Pq

≤ z
Pq
max. Then,

d

dt
∥xq∥2Pq

≤ −x⊤
q Qqxq + 2∥xq∥Pq

(
zPq
max + ∥Dq, χ∥Pq

)
.

Since Qq ≻ 0, we have −x⊤
q Qqxq ≤ −λ

Qq

minx
⊤
q xq [29] and

∥xq∥2Pq
≤ λ

Pq
maxx⊤

q xq leads to −x⊤
q xq ≤ −1

λ
Pq
max

∥xq∥2Pq
. Hence,

we obtain
d

dt
∥xq∥2Pq

≤ −2αq∥xq(t)∥2Pq
+ 2βq(t)∥xq(t)∥Pq

,

by definition of αq and βq . We introduce yq(t) := ∥xq(t)∥Pq ,
so that we have

d

dt
y2q (t) = 2yq(t)ẏq(t) ≤ −2αqyq(t)

2 + 2βq(t)yq(t).

For yq(t) > 0, we then have ẏq(t) ≤ −αqyq(t) + βq(t).
Let fq(t, s) := −αqs + βq(t). The solution of the dif-

ferential equation ṡ(t) = fq
(
t, s(t)

)
, s(0) = ∥x0

q∥Pq
is

s(t) = e−αqt
(
∥x0

q∥Pq
+
∫ t

0
eαqτβq(τ) dτ

)
. Since fq(t, s) is

Lipschitz in s and continuous in t, ẏq(t) ≤ fq
(
t, yq(t)

)
and

yq(0) = z(0), the Comparison Lemma of [29] states that
yq(t) ≤ s(t) for all t ≥ 0, hence (7) holds.

Note that the definition of z
Pq
max in Proposition 5 implies

that wq is chosen first and the controller uq reacts opti-
mally to it. The objective function not being concave-convex,
there is an information imbalance giving an advantage to the
second player. If we wanted instead the undesirable input
to react optimally to any controller, we could use z′ :=
min

uq ∈Uq

max
wq ∈Wq

∥∥Cqwq +Bquq

∥∥
Pq

in place of zPq
max. Note that

z′ ≥ z
Pq
max.

Now that we have bounded xq , we can evaluate how term
D ,qxq(t) impacts the network state χ(t) by building on
Proposition 5 and reusing Pq , Qq , αq , βq and z

Pq
max. We

will first investigate the scenario where B̂ is full rank before
requiring only controllability of pair

(
Â+ D̂, B̂

)
.

A. Fully-actuated networks

In this section we assume that the combined control matrix
of the first q − 1 subsystems, i.e., B̂ is full rank.

Proposition 6: If Â + D̂ and Aq are Hurwitz, B̂ is full
rank, and CqWq ⊈ BqUq , then for any P̂ ≻ 0 and Q̂ ≻ 0

such that (Â + D̂)⊤P̂ + P̂ (Â + D̂) = −Q̂ we introduce the

positive constants bP̂min := min
û∈ ∂Û

{
∥B̂û∥P̂

}
, α :=

λQ̂
min

2λP̂
max

,

γ :=

√
maxΛ(D⊤

,qP̂D ,q)

λ
Pq
min

and γq :=

√
maxΛ(D⊤

q, PqDq, )

λP̂
min

.

If ααq ̸=γγq , then there exist h±∈R and r±∈R such that
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∥χ(t)∥P̂ ≤ max

0, γz
Pq
max − αqb

P̂
min

ααq − γγq
+
∑

∗∈{+,−}

h∗e
(r∗−αq)t

.

(8)
If ααq = γγq , there are constants h± ∈ R such that

∥χ(t)∥P̂ ≤max

{
0,

γz
Pq
max − αqb

P̂
min

α+ αq
t+ h++ h−e

−(α+αq)t

}
.

(9)
Proof: The proof is given in Appendix I

We can now derive conditions for subsystem (5) to be
resiliently stabilizable despite the perturbations created by
xq . These conditions solve Problem 2 in the fully-actuated
network scenario.

Theorem 3: If Â+ D̂ and Aq are Hurwitz, B̂ is full rank,
CqWq ⊈ BqUq , γγq ≤ ααq and γz

Pq
max < αqb

P̂
min, then

subsystem (5) is resiliently stabilizable in finite time.
Proof: Let us first consider the case γγq = ααq . Since

α > 0 and αq > 0, the exponential term in (9) goes to zero
asymptotically. By assumption γz

Pq
max −αqb

P̂
min < 0 and α+

αq > 0, so the ratio of these factors is negative. Because this
ratio is multiplied by t in (9), there exists some time T ≥ 0
such that for all t ≥ T

γz
Pq
max − αqb

P̂
min

α+ αq
t+ h+ + h−e

−(α+αq)t ≤ 0.

Therefore, according to (9), subsystem (5) is resiliently stabi-
lizable in finite time.

Now consider the case γγq < ααq . Using (19), we can
easily show that this inequality is equivalent to r+ − αq < 0.
Since r− ≤ r+, we also have r−−αq < 0, so both exponential
terms in (8) converge to zero. Additionally, the fraction term
in (8) is negative, so the right-hand side of (8) reaches zero in
finite time. Therefore, subsystem (5) is resiliently stabilizable
in finite time.

Let us now give some intuition concerning Theorem 3.
Since γ is proportional to the norm of the matrix D ,q which
multiplies xq in (5), γ quantifies the impact of nonresilient
subsystem (3) of state xq on the rest of the network (5) of
state χ. Reciprocally, γq quantifies the impact of χ(t) on

xq(t). On the other hand, α =
λQ̂
min

2λP̂
max

relates to the joint
stability of the first q − 1 subsystems of network (5), while
αq relates to the stability of malfunctioning subsystem (3).
Therefore, condition γγq ≤ ααq follows the intuition that
the magnitude of the perturbations arising from the coupling
between subsystems (5) and (3) must be weaker than the
stability of each of these subsystems.

We will now discuss the other stabilizability condition of
Theorem 3, namely, γzPq

max < αqb
P̂
min. Since z

Pq
max describes

the magnitude of the destabilizing inputs in subsystem (3),
term γz

Pq
max quantifies the destabilizing influence of wq on

the state of the rest of the network χ. On the other hand, bP̂min

relates to the magnitude of the stabilizing inputs in subsys-
tem (5) and αq relates to the Hurwitzness of malfunctioning
subsystem (3). Therefore, condition γz

Pq
max < αqb

P̂
min carries

the intuition that the stabilizing terms of the network must
overcome the destabilizing ones.

Theorem 3 can also be used in an adversarial fashion,
by identifying subsystems of the network which are not
guaranteed to be resiliently stabilizable by Theorem 3.

Building on the bound of state χ from Proposition 6,
we can now derive a closed-form bound on state xq of
the malfunctioning subsystem q. Indeed, the bound on xq(t)
derived in Proposition 5 depends on χ(t) through the term
βq(t).

Proposition 7: If Â+D̂ and Aq are Hurwitz, B̂ is full rank,
CqWq ⊈ BqUq , and ααq ̸= γγq , we can bound the state of
subsystem (3) as

∥xq(t)∥Pq ≤

max
{
0, e−αqt∥x0

q∥Pq
+δ(t)

}
if ∥χ(t)∥P̂ > 0

z
Pq
max

αq
+
(
∥x0

q∥Pq
− z

Pq
max

αq

)
e−αqt otherwise,

(10)

with δ(t) =
αz

Pq
max − γqb

P̂
min

ααq − γγq

(
1− e−αqt

)
+ e−αqt

((
er+t − 1

)γqh+

r+
+
(
er−t − 1

)γqh−

r−

)
.

Proof: The proof is given in Appendix II
The singular case ααq = γγq is investigated in the ArXiv

version of this paper1.
Remark 2: The switch between bounds (10) is likely to be

discontinuous. Indeed, the bound in (10) valid for ∥χ(t)∥P̂ > 0
relies on all the overapproximations of bound (8), whereas the
case ∥χ(t)∥P̂ = 0 is derived without these overapproxima-
tions.

Thanks to Propositions 6 and 7, we now have a complete
description of the network state after a nonresilient loss of con-
trol authority. These results relied on the full rank assumption
of B̂. Because this assumption might be too restrictive, we
will now employ a different approach to bound the states of
an underactuated network.

B. Underactuated networks
In this section, we will only assume that pair

(
Â+D̂, B̂

)
is

controllable. Instead of the stabilizing control input of constant
magnitude B̂û(t) = − χ(t)

∥χ(t)∥P̂
bP̂min used in Proposition 6, we

will employ a linear control to bound network state χ.
The controllability assumption leads to the existence of a

matrix K such that Â+ D̂ − B̂K is Hurwitz [29]. Then, for
any P̂ ≻ 0 and Q̂ ≻ 0 such that (Â+ D̂− B̂K)⊤P̂ + P̂ (Â+
D̂ − B̂K) = −Q̂ [28], we can define the same constants α,
γ, γq and r± as in Proposition 6.

Proposition 8: If pair
(
Â+D̂, B̂

)
is controllable, Aq is Hur-

witz, CqWq ⊈ BqUq , γγq < ααq and sup
t≥ 0

b(t) ≤
√

λP̂
min

∥K∥ , then

system (5) is resiliently bounded: ∥χ(t)∥P̂ ≤ max {0, b(t)}
for all t ≥ 0, with

b(t) := p+ h+e
(r+−αq)t + h−e

(r−−αq)t, (11)

h± =
(αq − α− r∓)∥χ0∥P̂ + γ∥x0

q∥Pq + (r∓ − αq)p

±
√

(αq − α)2 + 4γγq

and p = γz
Pq
max

ααq−γγq
> 0.
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Proof: The proof is given in Appendix III.
Remark 3: Condition γγq < ααq in Proposition 8 is nec-

essary for the boundedness of χ(t), which in turn guarantees
the admissibility of the control law û(t) = −Kχ(t).

In bound (20), the perturbation from nonresilient subsys-
tem (3) is modeled by term p > 0. Because this perturbation
is of constant magnitude, it cannot be overcome by the linear
control û(t) = −Kχ(t) when χ is near 0. That is why
Proposition 8 only guarantees the resilient boundedness of χ
and not its resilient stabilizability.

Combining bounds (7) and (20), we can now derive a
closed-form bound on xq as we did in Proposition 7 when
B̂ was full rank.

Proposition 9: If pair
(
Â + D̂, B̂

)
is controllable, Aq is

Hurwitz, CqWq ⊈ BqUq , γγq < ααq and m ≤
√

λP̂
min

∥K∥ , then

∥xq(t)∥Pq
≤


max

{
0, e−αqt∥x0

q∥Pq
+ δ(t)

}
if ∥χ(t)∥P̂ > 0

z
Pq
max

αq
+
(
∥x0

q∥Pq
− z

Pq
max

αq

)
e−αqt otherwise

(12)
with

δ(t) =
αz

Pq
max

(
1− e−αqt

)
ααq − γγq

+ e−αqt
∑

∗∈{+,−}

γqh∗

r∗

(
er∗t − 1

)
.

Proof: The proof is extremely similar to that of Propo-
sition 7 and can be found in the ArXiv version1.

Using Propositions 8 and 9, we can now quantify the effect
of the loss of control authority over nonresilient subsystem (3).

Without the full rank assumption on B̄, we cannot resiliently
stabilize the rest of the network (5), but we provide a guar-
anteed bound on its state χ. This constitutes our solution to
Problem 2 for an underactuated network.

V. NUMERICAL EXAMPLES

We will now illustrate the theory established in the pre-
ceding sections on two academic examples, on an islanded
microgrid [17]–[19], [30] and on the IEEE 39-bus system [31].
All the data and codes necessary to run the simulations in this
section are available on GitHub2.

A. Fully actuated 3-component network

We start by testing the results of Section IV-A on a simple
network constituted of a nonresilient subsystem enduring a
partial loss of control authority. This network of states χ1, χ2

and xq follows dynamics

χ̇(t) =

[
−1 0.3
0.3 −1

]
χ(t) +

[
2 0
0 2

]
û(t) +

[
0.3
0.3

]
xq(t), (13)

ẋq(t) = −xq(t) + uq(t) + 2wq(t) +
[
0.3 0.3

]
χ(t), (14)

with χ(0) =

[
1
1

]
, xq(0) = 0, û(t) =

[
û1(t)
û1(t)

]
∈ Û = [−1, 1]2,

2https://github.com/Jean-BaptisteBouvier/Network-Resilience

uq(t) ∈ Uq = [−1, 1] and wq(t) ∈ Wq = [−1, 1]. Following
the notation of (3) and (5),

Aq = −1, Â+ D̂ =

[
−1 0.3
0.3 −1

]
, and B̂ =

[
2 0
0 2

]
. (15)

Matrices Aq and Â + D̂ are both Hurwitz, and the control
matrix B̂ is full rank. Additionally, CqWq = [−2, 2] ⊈
BqUq = [−1, 1]. Thus, all the assumptions of Propositions 5, 6
and 7 are verified. To apply these results, we solve Lyapunov
equations A⊤

q Pq+PqAq = −Qq and (Â+D̂)⊤P̂+P̂ (Â+D̂) =

−Q̂ with the function lyap on MATLAB:

Qq = 1, Pq = 0.5, Q̂ =

[
1 0
0 1

]
, and P̂ =

[
0.23 0.05
0.05 0.5

]
.

Following Proposition 5, αq = 1 and zPq

max = 1 obtained for
undesirable signal wq(t) = 1 and control law uq(t) = −1.
From Proposition 6, bP̂min = 2, α = 0.7, γ = 0.51, and γq =
0.48. Then, the resilient stabilizability conditions of Theorem 3
are satisfied: γγq = 0.25 < ααq = 0.7 and γzPq

max = 0.5 <

αqb
P̂
min = 2.

To verify that χ is indeed resiliently stabilizable in finite
time by B̂û = −χ(t)

∥χ(t)∥P̂

bP̂min, we propagate χ(t) and xq(t). The
finite-time resilient stabilization of state χ is illustrated on
Fig. 1. Additionally, ∥χ∥P̂ satisfies the tight bound (8) at all
times in this scenario.

Fig. 1. Finite-time resilient stabilization of network state χ(t) of (13).

Fig. 2 shows that malfunctioning state xq cannot be main-
tained at the origin but that its norm is bounded by both bounds
(7) and (10). Since αq > 0 and r± < αq, both bounds (7) and
(10) converge, and hence so does xq, which is then resiliently
bounded. As discussed in Remark 2, when χ(t) reaches 0,
bound (10) operates a discontinuous switch visible on Fig. 2
around t = 0.5 s.

Fig. 2. Resiliently bounded malfunctioning state xq(t) of (14).

https://github.com/Jean-BaptisteBouvier/Network-Resilience
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B. Underactuated 3-component network

To validate the results of Section IV-B, we need B̂ not to be
full row rank anymore, but the pair (Â+ D̂, B̂) must remain
controllable. Then, we remove the second column of B̂ so that
(13) becomes

χ̇(t) =

[
−1 0.3
0.3 −1

]
χ(t) +

[
2
0

]
û(t) +

[
0.3
0.3

]
xq(t), (16)

and (14) is left unchanged. The MATLAB functions lqr and
lyap choose the following gain matrix K and positive definite
matrices P̂ and Q̂:

K =
[
0.64 0.15

]
, P̂ =

[
0.22 0.04
0.04 0.5

]
, and Q̂ =

[
1 0
0 1

]
.

Then, γγq = 0.24 < ααq = 0.98 and û(t) := −Kχ(t) ∈
[−1, 1]. Thus, the linear feedback of Proposition 8 is admis-
sible and its bound (20) holds as shown on Fig. 3.

Fig. 3. Resiliently bounded network state χ(t) of (16).

On the contrary to bound (10) on Fig. 2, bound (12) on
Fig. 4 does not switch. Indeed, χ cannot be brought to 0 by the
linear control û, as explained after Proposition 8. As illustrated
on Fig. 4, bound (7) is tighter than bound (12). The reason
for this difference in conservatism is that (7) uses directly the
value of χ, while (12) replaces χ by its bound (20). As in
Fig. 2, xq is resiliently bounded since r± < αq guarantees the
convergence of bound (12).

Fig. 4. Resiliently bounded malfunctioning state xq(t).

To verify the admissibility of the linear control law û(t) =
−Kχ(t), we cannot use the sufficient condition of Proposi-

tion 8 as sup b(t) = 0.9 >

√
λP̂

min

∥K∥ = 0.71. However, we can
see on Fig. 5 that ∥Kχ(t)∥ ≤ 1 for all t ≥ 0 and thus û is in
fact admissible. Note that û(t) does not converge to 0 since
it needs to constantly counteract the destabilizing impact of
xq(t) on χ(t).

Fig. 5. Admissible linear feedback û(t) = −Kχ(t).

C. Microgrid test system
We will now investigate the resilient stabilizability of the is-

landed microgrid illustrated on Fig. 6 and studied in numerous
power system works such as [17]–[19], [30].

Fig. 6. Single-line diagram of the microgrid test system from [17].

Distributed generator 1 (DG1) is connected to the leader
node DG0 with pinning gain 1 and all the DGs are connected
following the communication digraph of Fig. 7.

reference
value (DG0) DG1 DG2 DG3 DG4

Fig. 7. Topology of the communication digraph.

We follow works [17]–[19] and employ their input-output
feedback linearization of the DG dynamics. Since all DGs aim
at synchronizing their voltage to the reference v0 = vref , we
consider as states the voltage difference between neighbors:
xi :=

[
vi−vi−1, v̇i− v̇i−1

]⊤
for i ∈ [[1, 4]]. Then, the objective

is to stabilize all the xi to the origin. After a loss of control
authority in DG4, we instead aim at bounding the voltages
so that they do not diverge too far from the reference. The
linearized microgrid is underactuated but controllable with
γγq = 0.0399 < ααq = 0.0401, so that we can apply
Propositions 8 and 9.

As seen on Fig. 8, bounds (7) and (12) are initially tight
and only diverge slowly from ∥xq(t)∥Pq

.
Since DG4 is not resilient, v4 does not converge to the

reference v0, but is nonetheless bounded as shown on Fig. 9.
In turn, DG4 disrupts its neighbor DG3, whose voltage v3
cannot reach v0 either. However, v3 is maintained much closer
to v0 than v4 thanks to the resilient controller of Proposition 8.
This resilient controller also allows DG1 and DG2 to remain
completely oblivious of the loss of control of DG4.

D. Resilient stabilizability of the IEEE 39-bus system
We will now investigate the resilient stabilizability of the

IEEE 39-bus system [31] illustrated on Fig. 10. This system is
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Fig. 8. Bounded malfunctioning state xq =
[
v4 −v3, v̇4 − v̇3

]⊤ with
tight bounds (7) and (12).

Fig. 9. Magnitude of the output voltages of the reference and the four
nodes of the microgrid.

comprised of 29 load buses and 10 generator buses. The state
of the load buses is described solely by their phase angles
{δi}i∈ [[1,29]], while the state of the generators is composed
of phase angles δi∈ [[30,39]] and frequencies ωi∈ [[30,39]], which
leads to a total of 49 states. Only the generator buses possess
a control input. Following [20], the power network equations
can be linearized around their nominal operating point after
adjustment for the reference bus, chosen to be the first gener-
ator, i.e., bus 30. The state vector is then

x =
(
{δi − δ30}i∈ [[1,29]]∪[[31,39]], {ωi}i∈ [[30,39]]

)
∈ R48.

After a cyber-attack, the network controller loses control
authority over generator bus 39, i.e., xq = [δ39 ω39]

⊤ and
wq = u39. Following [20], the malfunctioning dynamics are[
δ̇39(t)
ω̇39(t)

]
=

[
0 1

−18.6 −11.2

][
δ39(t)
ω39(t)

]
+

[
0

0.22

]
wq(t)+Dq, χ(t).

We choose initial states χ(0) = 146, δ39(0) = 0 rad and
ω39(0) = 0 Hz. Since Aq is Hurwitz and Bq = 0, the
assumptions of Proposition 5 are satisfied. Additionally, pair
(Â + D̂, B̂) is controllable so we can find a stabilizing gain
matrix K for the network dynamics. However, we cannot
apply Proposition 8 because the resilient stability condition
γγq < ααq is not satisfied. Indeed, γγq = 6.3 × 104, while
ααq = 5.7 × 10−3. This magnitude difference leads to the
exponential divergence of bounds (12) and (20), as seen on
Fig. 11.

Note that bound (7) is much tighter than (12) because
bound (7) uses

∫ t

0
e−αq(t−τ)∥Dq, χ(τ)∥Pq

dτ , whereas (7)
bounds this integral with exponentially diverging (20). In fact,

Fig. 10. Illustration of the IEEE 39-bus system [31] obtained from
https://icseg.iti.illinois.edu/ieee-39-bus-system/.

Fig. 11. Simulation of the network state χ with its bound (20) and
malfunctioning state xq with its bound (12). Both bounds are exponen-
tially diverging because γγq ≫ ααq , which contradicts the stability
condition of Proposition 8.

bound (7) remains a reasonable bound for malfunctioning state
xq over a much longer time horizon as illustrated on Fig. 12.

Fig. 12. Simulation of malfunctioning state xq of the IEEE 39-bus
system with bound (7).

As before, sufficient condition sup
t≥ 0

b(t) ≤
√

λP̂
min

∥K∥ of

Proposition 8 cannot tell whether linear feedback û is ad-
missible. However, the choice of K ensures admissibility

https://icseg.iti.illinois.edu/ieee-39-bus-system/
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max
i,t

|Kχi(t)| ≤ 1 as shown on Fig. 13.

Fig. 13. Maximal component of the linear feedback û(t) = −Kχ(t).

Let us delve a bit deeper into the exponential divergence
of bound (20). As mentioned previously, bound (20) is not
tight because γγq = 6.3 × 104 is orders of magnitude larger
than ααq = 5.7 × 10−3, whereas the stability condition of
Proposition 8 calls for γγq < ααq. As discussed after Theo-
rem 3, this condition carries the intuition that the perturbations
arising from the coupling between xq and χ should be weaker
than their respective stability. Despite having γγq ≫ ααq, the
coupling does not destabilize states xq and χ, which are both
bounded, as shown on Fig. 14.

40

Fig. 14. Simulation of network state χ and malfunctioning state xq of
the IEEE 39-bus system.

Since the coupling does not destabilize states χ and xq, the
violation of stability condition γγq < ααq is in fact due to
the failure of parameters γ and γq to characterize the coupling
between states χ and xq. As shown on Fig. 10 each bus
is only connected to a small number of other buses. Then,
matrix D̂ is almost entirely composed of zeros except for a
handful of terms per row. Because of this strong coupling with
very few nodes, constants γ and γq are very large. However,
the sparsity of matrix D̂ results in weak coupling of states χ
and xq, rendering γ and γq overly conservative. This intuition
was illustrated on the more densely connected microgrid of
Section V-C, where the bounds were much tighter. To study
sparsely connected networks like the IEEE 39-bus system, we
have the intuition that choosing a different norm reflecting
the sparsity of matrix D̂ would lower the values of γ and
γq. Doing so would significantly and non-trivially alter all the
proofs of Section IV.

VI. CONCLUSION AND FUTURE WORK

This paper investigated the resilient stabilizability of linear
networks enduring a loss of control. We first saw that the
overall stabilizability of networks composed exclusively of
resilient subsystems depends only on their interconnection.
Then, we focused on networks losing control authority over
a nonresilient subsystem. In this scenario, we showed that
under some conditions, the state of underactuated networks can
remain bounded and the state of fully actuated networks can
be stabilized. We were able to quantify the maximal magnitude
of undesirable inputs that can be applied to a nonresilient
subsystem without destabilizing the rest of the network.

We are considering several avenues of future work. First,
building on the nonlinear resilience theory of [22], we would
like to extend our approach to nonlinear networks. Doing so
would allow us to study the true nonlinear dynamics of power
systems, including the IEEE 39-bus system. Second, following
the discussion at the end of Section V-D, we want to extend
this theory to different matrix norms to provide tighter bounds
for sparse coupling matrices. The last avenue of future work
would be to relax the assumption of real-time knowledge of the
undesirable inputs by the controller. Doing so would allow to
account for actuation delays and can possibly be accomplished
following the techniques introduced in [22].

APPENDIX I
PROOF OF PROPOSITION 6

Proof: Since Â+ D̂ is Hurwitz, there exist a symmetric
P̂ ≻ 0 and Q̂ ≻ 0 such that (Â+ D̂)⊤P̂ + P̂ (Â+ D̂) = −Q̂
according to Lyapunov theory [28]. Following the same steps
as in the proof of Proposition 5 with χ⊤P̂χ = ∥χ∥2

P̂
and χ

following the dynamics (5), we first obtain

d

dt
∥χ(t)∥2

P̂
= −χ(t)⊤Q̂χ(t) + 2χ(t)⊤P̂

(
B̂û(t) +D ,qxq(t)

)
.

Because B̂ is full rank, for all χ(t) ̸= 0 there exist û(t) ∈ Û
such that B̂û(t) = − χ(t)

∥χ(t)∥P̂

bP̂min, as shown in the proof of
Proposition 5 of [10]. Then,

χ(t)⊤P̂ B̂û(t) = −χ(t)⊤P̂χ(t)

∥χ(t)∥P̂
bP̂min = −∥χ(t)∥P̂ b

P̂
min.

Since ∥·∥P̂ is a norm, it verifies the Cauchy-Schwarz inequal-
ity [27] χ⊤P̂D ,qxq ≤ ∥χ∥P̂ ∥D ,qxq∥P̂ . Then,

d

dt
∥χ(t)∥2

P̂
≤− χ(t)⊤Q̂χ(t)− 2∥χ(t)∥P̂ b

P̂
min

+ 2∥χ(t)∥P̂ ∥D ,qxq(t)∥P̂ .

As in Proposition 5, P̂ ≻ 0 and Q̂ ≻ 0 yield −χ⊤Q̂χ ≤
− λQ̂

min

λP̂
max

∥χ∥2
P̂

. Since P̂⊤ = P̂ ≻ 0 and P̂q ≻ 0, applying
the Rayleigh quotient inequality [27] yields ∥D ,qxq∥P̂ ≤
γ∥xq∥Pq

. We now combine these inequalities into

d

dt
∥χ∥2

P̂
≤ −λQ̂

min

λP̂
max

∥χ∥2
P̂
+ 2∥χ∥P̂

(
γ∥xq∥Pq

− bP̂min

)
.
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Let y(t) := ∥χ(t)∥P̂ and yq(t) := ∥xq(t)∥Pq
. Then, following

Proposition 5, we include bound (7), which yields

d

dt
y(t)2 ≤− λQ̂

min

λP̂
max

y(t)2 − 2y(t)bP̂min

+ 2y(t)γe−αqt

(
yq(0) +

∫ t

0

eαqτβq(τ)dτ

)
.

Since P⊤
q = Pq ≻ 0 and P̂ ≻ 0, applying the Rayleigh

quotient inequality [27] yields ∥Dq, χ∥Pq
≤ γq∥χ∥P̂ , which

can be used in βq defined in Proposition 5 as

βq(τ) = zPq

max + ∥Dq, χ(τ)∥Pq
≤ zPq

max + γqy(τ). (17)

Noticing d
dt
y(t)2 = 2y(t)ẏ(t), for y(t) > 0 we divide both

sides of the inequality preceding (17) by 2y(t), which yields

ẏ(t) ≤− αy(t)− bP̂min + γyq(0)e
−αqt

+ γe−αqt

∫ t

0

eαqτ
(
zPq

max + γqy(τ)
)
dτ.

We calculate the following trivial integral

e−αqt

∫ t

0

eαqτ dτ = e−αqt
eαqt − 1

αq
=

1− e−αqt

αq
,

so that the differential inequality becomes

ẏ(t) ≤− αy(t) +
γzPq

max

αq
− bP̂min + γ

(
yq(0)−

zPq

max

αq

)
e−αqt

+ γγqe
−αqt

∫ t

0

eαqτy(τ) dτ.

Now multiply both sides by eαqt > 0 and define v(t) :=
eαqty(t). Then, v̇(t) = αqv(t)+eαqtẏ(t), which leads to v̇(t) ≤
f
(
t, v(t)

)
with function

f
(
t, s(t)

)
:= (αq − α)s(t) +

(γzPq

max

αq
− bP̂min

)
eαqt

+ γ
(
yq(0)−

zPq

max

αq

)
+ γγq

∫ t

0

s(τ) dτ.

Now, we search for a solution to the differential equation
ṡ(t) = f

(
t, s(t)

)
. Differentiating this equation yields

s̈(t)+ (α−αq)ṡ(t)− γγqs(t)−
(
γzPq

max − αqb
P̂
min

)
eαqt = 0.

(18)
We distinguish two cases when solving (18). If ααq ̸= γγq,
s(t) = peαqt+h+e

r+t+h−e
r−t, with p =

γzPq
max

−αqb
P̂

min

ααq−γγq

, h± ∈ R
two constants and

r± =
1

2

(
αq − α±

√
(α− αq)2 + 4γγq

)
. (19)

We apply the Comparison Lemma of [29] stating that if ṡ(t) =
f
(
t, s(t)

)
, f is continuous in t and locally Lipschitz in s and

s(0) = v(0), then v̇(t) ≤ f
(
t, v(t)

)
implies v(t) ≤ s(t) for

all t ≥ 0. Using ∥χ(t)∥P̂ = y(t) = e−αqtv(t) ≤ e−αqts(t),
we obtain (8). To determine h±, we use the initial conditions
s(0) = v(0) = y(0) and ṡ(0) = f

(
0, s(0)

)
, which yield

h±=
(αq−α−r∓)∥χ0∥P̂+γ∥x0

q∥Pq
− bP̂min+(r∓− αq)p

±
√
(α− αq)2 + 4γγq

.

In the case ααq = γγq, the solution of (18) is

s(t) = pteαqt + h+e
αqt + h−e

−αt

with p =
γzPq

max
−αqb

P̂

min

α+αq

, and

h±=
1
2

(
−αq−α± 3(α−αq)

)
∥χ0∥P̂ ∓γ∥x0

q∥Pq
±bP̂min±p

αq + α
.

Applying the Comparison Lemma of [29] as above, we obtain
∥χ(t)∥P̂ = y(t) = e−αqtv(t) ≤ e−αqts(t) yielding (9).

APPENDIX II
PROOF OF PROPOSITION 7

Proof: We start with the case ∥χ(t)∥P̂ > 0. Then, bound
(8) combined with (17) yields∫ t

0

eαqτβq(τ)dτ ≤
∫ t

0

eαqτ
(
zPq

max+γqp+γq
∑

∗∈{+,−}

h∗e
(r∗−αq)τ

)
dτ

=
eαqt− 1

αq

(
zPq

max+ γqp
)
+
∑

∗∈{+,−}

(
er∗t− 1

)γqh∗

r∗
.

Using p =
γzPq

max
−αqb

P̂

min

ααq−γγq

yields zPq
max

+γqp

αq

=
αzPq

max
−γqb

P̂

min

ααq−γγq

. Then,
plugging the integral calculated above in (7), we obtain

∥xq(t)∥Pq
≤ e−αqt

(
∥x0

q∥Pq
+

αzPq

max − γqb
P̂
min

ααq − γγq

(
eαqt − 1

)
+
γqh+

r+

(
er+t − 1

)
+

γqh−

r−

(
er−t − 1

))
,

which yields (10). When ∥χ(t)∥P̂ = 0, βq simplifies to zPq

max

and yields

∥xq(t)∥Pq
≤ e−αqt

(
∥x0

q∥Pq
+

∫ t

0

eαqτzPq

max dτ

)
=

zPq

max

αq
+

(
∥x0

q∥Pq
− zPq

max

αq

)
e−αqt.

APPENDIX III
PROOF OF PROPOSITION 8

Proof: We will start by obtaining bounds on χ(t) with
control law û(t) = −Kχ(t) and then, we will verify under
which conditions is this û admissible. We follow the same
steps as in the proof of Proposition 6 with χ⊤P̂χ = ∥χ∥2

P̂
and

χ following the dynamics (5). Applying control law û(t) =
−Kχ(t) to subsystem (5) leads to

χ̇(t) =
(
Â− B̂K + D̂

)
χ(t) +D ,qxq(t).

Lyapunov equation (Â−B̂K+D̂)⊤P̂+P̂ (Â−B̂K+D̂) = −Q̂
now yields

d

dt
∥χ(t)∥2

P̂
= −χ(t)⊤Q̂χ(t) + 2χ(t)⊤P̂D ,qxq(t).

We then proceed as in Proposition 6, except that we do not
have the term bP̂min anymore, which leads to

∥χ(t)∥P̂ ≤ max
{
0, p+ h+e

(r+−αq)t+ h−e
(r−−αq)t

}
(20)
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as long as û(t) is admissible. Admissibility occurs while
û(t) = −Kχ(t) ∈ Û = [−1, 1]mΣ−mq . By assumption,

∥û(t)∥ ≤ ∥K∥∥χ(t)∥ ≤ ∥K∥∥χ(t)∥P̂√
λP̂
min

≤ sup
t≥ 0

b(t)
∥K∥√
λP̂
min

≤ 1.

Therefore û(t) is admissible. Since γγq < ααq, we have r± <
αq, so the two exponentials of (20) are bounded, i.e., χ is
resiliently bounded.
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